
Table of Contents
 Section 1: Introduction and Overview……………………………………………….2
2Introduction

2USPS Address Matching System Developer’s Kit

2AMS CD-ROM Technical Support

3Installation Procedures for Windows 32-Bit

5Installation Procedures for SUN UNIX (32 Bit)

7Installation Procedures for SUN UNIX (64 Bit)

9Installation Procedures for OSF UNIX

11Installation Procedures for AIX UNIX

13Installation Procedures for LINUX

15Functions

16Open the Address Matching System

17Open the Address Matching System with Special Parameters

20Address Inquiry

25Address Sort Key

279-digit Inquiry

29Address Standardization

31Close the Address Matching System

32Read City/State File By Key

33Read City/State File Next

35Read ZIP+4 File By Key

36Read ZIP+4 File Next

38Get ZIP Codes from a City/State

40Terminate Active Address Inquiry

41Get Date of ZIP+4 Database

42Get AMS Data Expiration

43Get AMS Library Expiration

44Get CD-ROM Expiration Information

45Get API Code Version

46Multiple Response Stack

48Get Last Error

50Get Environment

51Section 4: Footnote Flags

65Appendix B – File Names and Locations

Introduction

The USPS Address Matching System Application Programming Interface User Guide is the primary reference document for the USPS National Customer Support Center’s Address Matching System product. The guide contains installation instructions for each platform as well as function descriptions.

The USPS Address Matching System (AMS) is an application programming interface (API). As such, this guide should be used when the user wants to interface an application with the Address Matching System.
USPS Address Matching System Developer’s Kit

The USPS Address Matching System Developer’s Kit contains the following:

• API library(s) for each specific computer platform

• Interface definition file (ZIP4.H)

• Test utility (SAMPLE.EXE)

• Test utility source code

• Sample configuration data files

• User documentation

The test utility can be used to ensure that the Address Matching System and data files have been installed correctly and to provide access to our matching logic, which displays the standardized address returned by the matching engine. This enables you to verify the accuracy of the ZIP+4 results returned from your product.

The AMS software, including, but not limited to, .DLLs, shared objects and static objects all expire and cease functionality based on USPS Coding Accuracy Support System (CASS) guidelines. The AMS software expires July 31st each year. The AMS data expires 105 days from the release date of the CDROM, which is the 15th day of each month.

AMS CD-ROM Technical Support

If there are any questions regarding the Address Matching System API, please call the USPS’ National Customer Support Center, AMS CD-ROM Technical Support at 1-877-640-0724. Hours of operation are 7am to 5pm Monday through Friday CST.
Installation Procedures for Windows 32-Bit

1. Create a directory on your hard drive in which to store the API files.
 Ex.
MD C:\AMS
2. Copy the Address Matching System files to your hard drive using the decryption program DEV_W32.EXE located on the CD-ROM in the DEV_KITS directory.
Ex.
DEV_W32 CUST_ID OUTPUT_PATH PRODUCT_FILE
a. OUTPUT_PATH is the directory created in step 1.

b. PRODUCT_FILE is the file from the list in step 7. This should not include any directory paths.

The installation program must be executed from within the CD-ROM directory. This step needs to be performed once for each file listed in the file description in step 7. Following initial installation, the only files that need to be installed with subsequent CD-ROM updates are the header files and libraries. A batch file is recommended to simplify this install process.
Note:
A customer ID (CUST_ID) should be obtained from AMS CD-ROM Technical Support.

The customer ID must be entered in uppercase letters.

The customer ID provided by AMS CD-ROM Technical Support will change each month.

We do not recommend hard-coding the customer ID into an install program. For program

installation, you may obtain a unique customer ID from AMS CD-ROM Technical Support.

This unique customer ID will not change for the duration of the AMS API license unless

otherwise specified.

3. Change the directory locations in the Z4CONFIG.DAT file to the locations of the Address Matching System data files. (See Appendix B for a description of this file layout.)

 Example file for W32:

 APPLICATION

OTHER - ZIP+4
 COMPUTER

OTHER
 ADDRESS1

D:\AMSDATA\
 ADDRESS2
 ADDRESS3

 ADDRINDEX

D:\AMSDATA\
 CDROM
 CITYSTATE

D:\AMSDATA\
 CROSSREF

D:\AMSDATA\
 SYSTEM

C:\AMS\
 TABLE
 USER
 ADDR1SIZE
 ADDR2SIZE
 ADDR3SIZE
 EWSPATH

4. Run SAMPLE.EXE to test AMS.
5. Use SAMPLE.C as an example to create your own API application.

6. Refer to Section 3, API Functions, to test other API function commands.
7. The following is an explanation of the API files for W32:
a. ZIP4_W32.DLL

ZIP4 dynamic-link library

b. ZIP4_W32.LIB

Stub library to link with the user application

c. ZIP4.H

Interface header file

d. Z4CONFIG.DAT

File location file

e. Z4CXLOG.DAT

Date time file

f. SAMPLE.C

Sample C source file

g. SAMPLE.EXE

Sample executable
Special Notes for Windows 32-bit
The Windows 32-bit version of the Address Matching System DLL was built with all export functions having the ‘_cdecl’ calling convention, which has caused problems with some programming languages that do not support this convention. To provide access to the address matching routines in the DLL for non C and C++ languages, the DLL now contains a set of routines with the proper DLL calling convention ‘_stdcall.’ These routines have separate names from the original routines to preserve linkage with existing programs, and the new names are a concatenation of the original function name and ‘STD,’ which implies the _stdcall calling convention, e.g.,

_cdecl function name
_stdcall function name

z4open()

z4openSTD()

z4adrinq()

z4adrinqSTD()

z4close()

z4closeSTD()

All of the _stdcall functions map directly to the original functions, so there is no loss in functionality. All existing functions have an associated _stdcall version, and all future additions to the DLL will contain both a _cdecl version and a _stdcall version.

Installation Procedures for SUN UNIX (32 Bit)

1. Create a directory on your hard drive in which to store the API files.

 Ex. mkdir /usr/src/ams

2. Copy the Address Matching System files to your hard drive using the decryption program

 DEV_SUN.EXE located on the CD-ROM in the DEV_KITS directory.
 Ex. DEV_SUN.EXE CUST_ID OUTPUT_PATH PRODUCT_FILE
a. OUTPUT_PATH is the directory created in step 1.

b. PRODUCT_FILE is the file from the list in step 7. This should not include any directory paths.

The installation program must be executed from within the CD-ROM directory. This step needs to be performed once for each file listed in the file description in step 7 on the next page. Following initial

installation, the only files that need to be installed with subsequent CD-ROM updates are the header

files and libraries. A batch file is recommended to simplify this install process.
Note:
 A customer ID (CUST_ID) should be obtained from AMS CD-ROM Technical Support. The

 customer ID must be entered in uppercase letters.

The customer ID provided by AMS CD-ROM Technical Support will change each month. We do

not recommend hard-coding the customer ID into an install program. For program installation,

you may obtain a unique customer ID from AMS CD-ROM Technical Support. This unique

customer ID will not change for the duration of the AMS API license unless otherwise specified.

3. Change the directory locations in the Z4CONFIG.DAT file to the locations of the Address Matching

 System data files. (See Appendix B for a description of this file layout.)

 Example file for SUN:
 APPLICATION

OTHER - ZIP+4

 COMPUTER

OTHER

 ADDRESS1

/mount/cdrom/

 ADDRESS2

 ADDRESS3

 ADDRINDEX

/mount/cdrom/

 CDROM

 CITYSTATE

/mount/cdrom/

 CROSSREF

/mount/cdrom/

 SYSTEM

/usr/src/ams/

 TABLE

 USER

 ADDR1SIZE

 ADDR2SIZE

 ADDR3SIZE

 EWSPATH

4. Run SAMPLESH and SAMPLEST to test the Address Matching System.

a. CHMOD on SAMPLESH and SAMPLEST to rwx.

b. CHMOD on Z4CXLOG.DAT to rw.

5. Use SAMPLE.C as an example to create your own API application.

6. Refer to Section 3, API Functions, to test other API function calls.

7. The following is an explanation of the API files for SUN UNIX:

a. LIBZ4SUN.SO
ZIP4 shared library
b. ZIP4_SUN.A
Static link library; not recommended

c. ZIP4.H

Interface header file

d. Z4CONFIG.DAT
File location file

e. Z4CXLOG.DAT
Date time file

f. SAMPLE.C

Sample C source file

g. SAMPLESH
Sample executable linked with LIBZ4SUN.SO

h. SAMPLEST

Sample executable built with ZIP4_SUN.A

Special Notes for SUN UNIX (32 Bit)
The Address Matching System CD-ROM uses the ISO9660 file-system format, which stores file names in

uppercase letters with a version control number appended to the end. The API requires that the CD-ROM

file names appear in lowercase letters without the version number. Some versions of UNIX will automatically accommodate file name conversion during the mount process, but some require the user to specify the conversion explicitly with the options of the “mount” command. Please see the man pages on mount for more information on these options.
The Address Matching System SUN API Developer’s Kit contains both a static-link and a shared library.

The static-link library is provided for compatibility with older programs written before the shared library

was available. The USPS does not recommend use of the static-link library because logic changes are

often made to the API, and the user would have to re-link the executable file with the AMS static-link

library every time there is an update. Also, in compliance with CASS rules, the API code is set to expire

at the end of the current CASS cycle, each August. If this date is reached without re-linking with a newer

API, a user’s application will stop functioning.
To avoid these problems the USPS recommends using the AMS shared library so that user applications

can gain immediate access to any logic changes simply by installing the new shared library. User applications do not need to be re-linked when a new shared library is provided on CD-ROM updates.

Installation Procedures for SUN UNIX (64 Bit)

1. Create a directory on your hard drive in which to store the API files.

 Ex. mkdir /usr/src/ams

2. Copy the Address Matching System files to your hard drive using the decryption program

 DEV_S64.EXE located on the CD-ROM in the DEV_KITS directory.
 Ex. DEV_S64.EXE CUST_ID OUTPUT_PATH PRODUCT_FILE
a. OUTPUT_PATH is the directory created in step 1.

b. PRODUCT_FILE is the file from the list in step 7. This should not include any directory paths.

The installation program must be executed from within the CD-ROM directory. This step needs to be performed once for each file listed in the file description in step 7 on the next page. Following initial

installation, the only files that need to be installed with subsequent CD-ROM updates are the header

files and libraries. A batch file is recommended to simplify this install process.
Note:
 A customer ID (CUST_ID) should be obtained from AMS CD-ROM Technical Support. The

 customer ID must be entered in uppercase letters.

The customer ID provided by AMS CD-ROM Technical Support will change each month. We do

not recommend hard-coding the customer ID into an install program. For program installation,

you may obtain a unique customer ID from AMS CD-ROM Technical Support. This unique

customer ID will not change for the duration of the AMS API license unless otherwise specified.

3. Change the directory locations in the Z4CONFIG.DAT file to the locations of the Address Matching

 System data files. (See Appendix B for a description of this file layout.)

 Example file for S64:

 APPLICATION

OTHER - ZIP+4

 COMPUTER

OTHER

 ADDRESS1

/mount/cdrom/

 ADDRESS2

 ADDRESS3

 ADDRINDEX

/mount/cdrom/

 CDROM

 CITYSTATE

/mount/cdrom/

 CROSSREF

/mount/cdrom/

 SYSTEM

/usr/src/ams/

 TABLE

 USER

 ADDR1SIZE

 ADDR2SIZE

 ADDR3SIZE

 EWSPATH

4. Run SAMPLESH to test the Address Matching System.

a. CHMOD on SAMPLESH to rwx.

b. CHMOD on Z4CXLOG.DAT to rw.

5. Use SAMPLE.C as an example to create your own API application.

6. Refer to Section 3, API Functions, to test other API function calls.

7. The following is an explanation of the API files for SUN UNIX:

a. LIBZ4SUN64.SO
ZIP4 shared library
b. ZIP4.H

Interface header file

c. Z4CONFIG.DAT
File location file

d. Z4CXLOG.DAT
Date time file

e. SAMPLE.C

Sample C source file

f. SAMPLESH
Sample executable linked with LIBZ4SUN.SO

Special Notes for SUN UNIX (64 Bit)
The Address Matching System CD-ROM uses the ISO9660 file-system format, which stores file names in

uppercase letters with a version control number appended to the end. The API requires that the CD-ROM

file names appear in lowercase letters without the version number. Some versions of UNIX will automatically accommodate file name conversion during the mount process, but some require the user to specify the conversion explicitly with the options of the “mount” command. Please see the man pages on mount for more information on these options.
The Address Matching System S64 API Developer’s Kit contains a shared library. In compliance with CASS rules, the API code is set to expire at the end of the current CASS cycle, each August. If this date is reached without replacing the shared library, a user’s application will stop functioning.
Installation Procedures for OSF UNIX

1. Create a directory on your hard drive in which to store the API files.

 Ex.
 mkdir /usr/src/ams

2. Copy the DEV_OSF.EXE located on the CD-ROM in the DEV_KITS directory.

 Ex. DEV_OSF.EXE CUST_ID OUTPUT_PATH PRODUCT_FILE
a. OUTPUT_PATH is the directory created in step 1.

b. PRODUCT_FILE is the file from the list in step 7. This should not include any directory paths.
The installation program must be executed from within the CD-ROM directory. This step needs to be

performed once for each file listed in the file description in step 7 on the next page. Following initial

installation, the only files that need to be installed with subsequent CD-ROM updates are the header

files and libraries. A batch file is recommended to simplify this install process.
Note:
A customer ID (CUST_ID) should be obtained from AMS CD-ROM Technical Support. The

 customer ID must be entered in uppercase letters.

 The customer ID provided by AMS CD-ROM Technical Support will change each month. We do not recommend hard-coding the customer ID into an install program. For program installation, you may obtain a unique customer ID from AMS CD-ROM Technical Support. This unique customer ID will not change for the duration of the AMS API license unless otherwise specified.
3. Change the directory locations in the Z4CONFIG.DAT file to the locations of the Address Matching

 System data files. (See Appendix B for a description of this file layout.)

 Example file for OSF:

 APPLICATION

OTHER - ZIP+4

 COMPUTER

OTHER

 ADDRESS1

/mount/cdrom/

 ADDRESS2

 ADDRESS3

 ADDRINDEX

/mount/cdrom/

 CDROM

 CITYSTATE

/mount/cdrom/

 CROSSREF

/mount/cdrom/

 SYSTEM

/usr/src/ams/

 TABLE

 USER

 ADDR1SIZE

 ADDR2SIZE

 ADDR3SIZE

 EWSPATH

4. Run SAMPLESH and SAMPLEST to test Address Matching System.

a. CHMOD on SAMPLESH and SAMPLEST to rwx.

b. CHMOD on Z4CXLOG.DAT to rw.

5. Use SAMPLE.C as an example to create your own API application.

6. Refer to Section 3, API Functions, to test other API function commands.

7. The following is an explanation of the API files for OSF UNIX:

a. LIBZ4OSF.SO

ZIP4 shared library

b. ZIP4_OSF.A

Static link library; not recommended

c. ZIP4.H

Interface header file

d. Z4CONFIG.DAT
File location file

e. Z4CXLOG.DAT

Date time file

f. SAMPLE.C

Sample C source file

g. SAMPLESH

Sample executable linked with LIBZ4OSF.SO

h. SAMPLEST

Sample executable built with ZIP4_OSF.A
Special Notes for OSF UNIX

The Address Matching System CD-ROM uses the ISO9660 file-system format, which stores file names in

uppercase letters with a version control number appended to the end. However, the API requires that the

CD-ROM file names appear in lowercase letters without the version number. Some versions of UNIX will

automatically accommodate file-name conversion during the mount process, but some require the user to

specify the conversion explicitly with the options of the “mount” command. Please see the man pages on

mount for more information on these options.
Installation Procedures for AIX UNIX

1 Create a directory on your hard drive in which to store the API files.

 Ex. mkdir /usr/src/ams

2 Copy the Address Matching System files to your hard drive using the decryption program

 DEV_AIX.EXE located on the CD-ROM in the DEV_KITS directory.

 Ex. DEV_AIX.EXE CUST_ID OUTPUT_PATH PRODUCT_FILE

a. OUTPUT_PATH is the directory created in step 1.

b. PRODUCT_FILE is the file from the list in step 7. This should not include any directory paths
The installation program must be executed from within the CD-ROM directory. This step needs to be

performed once for each file listed in the file description in step 7 on the next page. Following initial

installation, the only files that need to be installed with subsequent CD-ROM updates are the header files

and libraries. A batch file is recommended to simplify this install process.

Note:
 A customer ID (CUST_ID) should be obtained from AMS CD-ROM Technical Support. The

customer ID must be entered in uppercase letters.

The customer ID provided by AMS CD-ROM Technical Support will change each month. We do

not recommend hard-coding the customer ID into an install program. For program installation,

you may obtain a unique customer ID from AMS CD-ROM Technical Support. This unique

customer ID will not change for the duration of the AMS API license unless otherwise specified.

.

3 Change the directory locations in the Z4CONFIG.DAT file to the locations of the Address Matching

 System data files. (See Appendix B for a description of this file layout.)

 Example file for AIX:

 APPLICATION OTHER - ZIP+4

 COMPUTER
OTHER

 ADDRESS1
/mount/cdrom/

 ADDRESS2

 ADDRESS3

 ADDRINDEX
/mount/cdrom/

 CDROM

 CITYSTATE
/mount/cdrom/

 CROSSREF
/mount/cdrom/

 SYSTEM

/usr/src/ams/

 TABLE

 USER

 ADDR1SIZE

 ADDR2SIZE

 ADDR3SIZE

 EWSPATH

4 Run SAMPLEST to test Address Matching System.

a. CHMOD on SAMPLEST to rwx.
b. CHMOD on Z4CXLOG.DAT to rw.

5 Use SAMPLE.C as an example to create your own API application.

6 Refer to Section 3, API Functions, to test other API function commands.

7 The following is an explanation of the API files for AIX UNIX:

a. ZIP4_AIX.A
Static-link library

b. ZIP4.H

Interface header file

c. Z4CONFIG.DAT
File location file

d. Z4CXLOG.DAT
Date time file

e. SAMPLE.C

Sample C source file

f. SAMPLEST

Sample executable built with ZIP4_AIX.A

Special Notes for AIX UNIX

The Address Matching System CD-ROM uses the ISO9660 file-system format, which stores file names in

uppercase letters with a version control number appended to the end. However, the API requires that the

CD-ROM file names appear in lowercase letters without the version number. Some versions of UNIX will

automatically accommodate file-name conversion during the mount process, but some require the user to

specify the conversion explicitly with the options of the “mount” command. Please see the man pages on

mount for more information on these options.

Installation Procedures for LINUX

1. Create a directory on your hard drive in which to store the API files.

Ex. mkdir /usr/src/ams

2. Copy the Address Matching System files to your hard drive using the decryption program

 DEV_LNX.EXE located on the CD-ROM in the DEV_KITS directory.
 Ex. DEV_LNX.EXE CUST_ID OUTPUT_PATH PRODUCT_FILE
a. OUTPUT_PATH is the directory created in step 1.

b. PRODUCT_FILE is the file from the list in step 7. This should not include any directory paths.
The installation program must be executed from within the CD-ROM directory. This step needs to be performed once for each file listed in the file description in step 7 on the next page. Following initial installation, the only files that need to be installed with subsequent CD-ROM updates are the header files and libraries. A batch file is recommended to simplify this install process.
Note:
A customer ID (CUST_ID) should be obtained from AMS CD-ROM Technical Support. The

customer ID must be entered in uppercase letters.

The customer ID provided by AMS CD-ROM Technical Support will change each month. We do

not recommend hard-coding the customer ID into an install program. For program installation,

you may obtain a unique customer ID from AMS CD-ROM Technical Support. This unique

customer ID will not change for the duration of the AMS API license unless otherwise specified.

3. Change the directory locations in the Z4CONFIG.DAT file to the locations of the Address Matching

 System data files. (See Appendix B for a description of this file layout.)

 Example file for LNX:

APPLICATION
OTHER - ZIP+4

COMPUTER
OTHER

ADDRESS1
/mount/cdrom/

ADDRESS2

ADDRESS3

ADDRINDEX
/mount/cdrom/

CDROM

CITYSTATE
/mount/cdrom/

CROSSREF
/mount/cdrom/

SYSTEM

/usr/src/ams/

TABLE

USER

ADDR1SIZE

ADDR2SIZE

ADDR3SIZE

EWSPATH
4. Run SAMPLESH and SAMPLEST to test Address Matching System.

a. CHMOD on SAMPLESH and SAMPLEST to rwx.

b. CHMOD on Z4CXLOG.DAT to rw.

5. Use SAMPLE.C as an example to create your own API application.

6. Refer to Section 3, API Functions, to test other API function commands.

7. The following is an explanation of the API files for LNX:

a. LIBZ4LNX.SO

ZIP4 shared library

b. ZIP4_LNX.A

Static link library; not recommended

c. ZIP4.H

Interface header file

d. Z4CONFIG.DAT

File location file

e. Z4CXLOG.DAT

Date time file

f. SAMPLE.C

Sample C source file

g. SAMPLESH

Sample executable linked with LIBZ4LNX.SO

h. SAMPLEST

 Sample executable built with ZIP4_LNX.A

Special Notes for LINUX

The Address Matching System CD-ROM uses the ISO9660 file-system format, which stores file names in

uppercase letters with a version control number appended to the end. However, the API requires that the

CD-ROM file names appear in lowercase letters without the version number. Some versions of UNIX will

automatically accommodate file-name conversion during the mount process, but some require the user to

specify the conversion explicitly with the options of the “mount” command. Please see the man pages on

mount for more information on these options.
The Address Matching System LINUX API Developer’s Kit contains both a static-link and a shared

library. The static-link library is provided for compatibility with older programs written before the shared

library was available. The USPS does not recommend use of the static-link library because logic changes

are often made to the API, and the user would have to re-link the executable files with the AMS staticlink

library every time there is an update. Also, in compliance with CASS rules, the API code is set to

expire at the end of the current CASS cycle, each August. If this date is reached without re-linking with a

newer API, a user’s application will stop functioning.
To avoid these problems, the USPS recommends using the AMS shared library so that user applications

can gain immediate access to any logic changes simply by installing the new shared library. User applications do not need to be re-linked when a new shared library is provided on CD-ROM updates.

Functions

The following functions are used to perform inquiries on addresses and 9-digit ZIP Codes:

• z4open()

Open the Address Matching System

• z4opencfg()

Open the Address Matching System with Special Parameters
• z4adrinq()

Address Inquiry

• z4adrkey()

Address Sort Key

• z4xrfinq()

9-digit Inquiry

• z4adrstd()

Address Standardization

• z4close()

Close the Address Matching System

• z4ctyget()

Read City/State File by Key

• z4ctynxt()

Read City/State File Next

• z4adrget()

Read ZIP+4 File by Key

• z4adrnxt()

Read ZIP+4 File Next

• z4getzip()

Get a ZIP Code range for a City/St

• z4abort()

Terminate Active Address Inquiry

• z4date()

Get Date of ZIP+4 Database
• z4GetDataExpireDays()
Get AMS Data Expiration

• z4GetCodeExpireDays()
Get AMS Library Expiration
• z4expire()

Get CD ROM Expiration Information- Deprecated: Use z4GetDataExpireDays()
• z4ver()

Get the Version of the API code

• z4scroll()

Multiple Response Stack

• z4geterror()

Get Last Error

• z4getenv()

Get Environment
Open the Address Matching System

The z4open() function opens the Address Matching System for application use. This function must be

called before attempting to use any of the inquiry functions. During system opening, the Address Matching

System allocates memory buffers and file handles for disk I/O. The function returns a code summarizing

the results of the open operation.

It is recommended that you use the z4opencfg() function (see page 15) instead of the z4open() function.The z4open() function searches the systems for a configuration file and will use the first one found. This

function can cause unexpected operation by using a configuration file that was not expected to be in its

search path.
Note:
The z4open() function does not provide access to eLOT or DPV functionality. In order to gain access to this extended functionality, you will need to use the z4opencfg() function to open the
USPS Address Matching System (see page 17)

.

Syntax

#include <zip4.h>

int z4open(void);

Input

None

Output

None

Return

-1
The USPS Address Matching System is already open

 0
The USPS Address Matching System opened successfully

 1
The USPS Address Matching System is not in sync

 2
The USPS Address Matching System has expired

Example

#include <stdio.h>

#include <zip4.h>
void main(void)

{

/*open The USPS Address Matching System */

if (z4open() == 0)

printf(“The USPS Address Matching System Open.\n”);

else

printf(“Error opening the USPS Address Matching System.\n”);

}

Open the Address Matching System with Special Parameters

The z4opencfg() function opens the Address Matching System in the same manner as z4open(), but it

gives the user more control over the configuration file and Enhanced Line of Travel (eLOT) processing.

Enhanced Line of Travel is available through the USPS AMS API, but it is turned off by default. To

enable eLOT processing, you must first call z4opencfg() and set the elotflag variable to ‘Y’. You must

also use the CONFIG_PARM to specify the paths to the AMS database.

The configuration file can be changed by using the character pointer fname to point to the path and

filename for a configuration file on your system, or by specifying the paths in the CONIG_PARM character

pointers.

Syntax

#include <zip4.h>

int z4opencfg(Z4OPEN_PARM* openparm);

Input

openparm
 pointer to a Z4OPEN_PARM structure

If a field in the Z4OPEN_PARM is not used, then it must be initialized to zero (see example code).
typedef struct

{

 char rsvd1[50];

 short status;
 char *fname
 CONFIG_PARM config
 char elotflag;

 char dpvflag;

 char systemflag;
 char rsvd2[49];

}Z4OPEN_PARM;
Field Definitions:
	rsvd1
	Reserved for future use.

	status
	See “Output” section.

	fname
	Pointer to a string that contains the full path and filename for a custom config file.

	config
	Embedded structure for setting the path names to the AMS database. (Not used if fname is set)

	elotflag
	Set to ‘Y’ to activate eLOT processing.

	dpvflag
	Set to ‘Y’ to activate DPV processing.

	systemflag
	Set to ‘Y’ to de-activate the auto-generation of the security file.

	rsvd2
	Reserved for future use.

Output

Z4OPEN_PARM.status will be set to 1, 2 or 9 to indicate which value was used for the configuration file.

Name

Value

Meaning
Z4_FNAME
1

Used the value pointed to by the fname character pointer

Z4_CONFIG
2

Used the values pointed to by the CONFIG_PARM structure

Z4_SEARCH
9

Searched for a file named z4config.dat
Return

See z4open().

Example

#include <stdio.h>

#include <zip4.h>
void main(void)

{

Z4OPEN_PARM openparm;

int rtn=0;
memset(&openparm, 0, sizeof(openparm));

/*Use the fname character pointer to point to a file on the user’s system*/
openparm.fname = “c:\\ams\\special.cfg”;
/*open the USPS Adress Matching System*/

rtn = z4opencfg(&openparm);
if(rtn==0)

printf(“\nThe USPS Address Matching System Opened Successfully.”);

else

printf(“\nError Opening the USPS Address Matching System.”);
/*close the USPS Address Matching System*/

z4close();
/*Open with the paths embedded in the CONFIG_PARM structure*/

/*reset variables*/

memset(&openparm, 0, sizeof(openparm));

rtn=0;
/*Setting up paths instead of using the configuration file*/

openparm.config.address1
= ”c:\\amsdata\\”;

openparm.config.addrindex
= ”c:\\amsdata\\”;

openparm.config.cdrom

= ”d:\\”;

openparm.config.citystate
= ”c:\\amsdata\\”;

openparm.config.crossref
= ”c:\\amsdata\\”;

openparm.config.system

= ”c:\\amsdata\\”;
/*Turn eLOT processing on*/

openparm.elotflag = ‘Y’;
rtn = z4opencfg(&openparm);

if(rtn==0)

printf(“\nSuccess opening the USPS Address Matching System.”);

else

printf(“\nError opening the USPS Address Matching System.”);

/*close the USPS Address Matching System*/

z4close();

}
Address Inquiry

The z4adrinq() function commands the Address Matching System to perform an address inquiry using

firm name (optional), address, and city/state/ZIP information. Before performing this function, the input

address information must be copied into the corresponding input fields outlined below. Note that the City,

State, and ZIP fields may be placed either within the parm.ictyi field or copied to the parm.ictyi,

parm.stai, and parm.izipc fields, respectively. Following the address inquiry, the parm.retcc field contains

a response code summarizing the inquiry results. If an address response was found, standardized address

information will be located in the output fields described below.

Syntax

#include <zip4.h>

int z4adrinq(ZIP4_PARM *parm);

Input

The parm argument must point to a ZIP4_PARM structure. The following fields must be initialized before calling the z4adrinq() function. If a field is not used, it must be initialized to zero.
parm.iadl1

Street Address

parm.iadl2

Firm Name

parm.iad13

Secondary Address

parm.iprurb

Puerto Rican Urbanization Name

parm.ictyi

City or City/State/ZIP

parm.istai

State or empty

parm.izipc

ZIP or empty

Output

parm.retcc

Response code

Z4_SINGLE

31 — A single address was found

Z4_DEFAULT

32 — An address was found, but a more specific address could be found with
 more information
parm.retcc

Response Code

Z4_INVADDR

10 — Invalid input address (i.e., contained a dual address)

Z4_INVZIP

11 — Invalid input 5-digit ZIP Code

Z4_INVSTATE

12 — Invalid input state abbreviation code

Z4_INVCITY

13 — Invalid input city name

Z4_NOTFND

21 — No match found using input address

Z4_MULTIPLE

22 — Multiple responses were found and more specific information is

 required to select a single or default response

parm.foot

Footnotes

parm.foot.a = “A”

ZIP Code Corrected

parm.foot.b = “B”

 City/State Corrected

parm.foot.c = “C”

Invalid City/State/ZIP

parm.foot.d = “D”

No ZIP+4 Code Assigned

parm.foot.e = “E”

ZIP Code Assigned with a Multiple Response

parm.foot.f = “F”

Address Not Found

parm.foot.g = “G”

All or Part of the Firm Line Used For Address Line

parm.foot.h = “H”

 Missing Secondary Number

parm.foot.i = “I”

Insufficient/Incorrect Data

parm.foot.j = “J”

PO Box Dual Address

parm.foot.k = “K”

Non-PO Box Dual Address

parm.foot.l = “L”

Address Component Changed

parm.foot.m = “M”

 Street Name Changed

parm foot.n = “N”

Address Standardized

parm.foot.p = “P”

Better Address Exists

parm.foot.r = “R”

No Match due to EWS

parm.foot.s = “S”

Incorrect Secondary Number

parm.foot.t = “T”

Multiple response due to Magnet Street Syndrome

parm.foot.u = “U”

Unofficial Post Office Name

parm.foot.v = “V”

Unverifiable City/State

parm.foot.w = “W”

Small Town Default

parm.foot.x = “X”

Unique ZIP Code Default

parm.foot.z = “Z”

ZIP Move Match

Return Address Description

parm.dadl1

Standardized Output Address

parm.dadl2

Standardized Output Firm Name

parm.dad13

Standardized Secondary Address

parm.dprurb

Standardized Puerto Rican Urbanization Name

parm.dctya

Standardized Output City

parm.dstaa

Standardized Output State

parm.zipc

5-digit ZIP Code

parm.addon

 4-digit Add-on Code

parm.cris

4-digit Carrier Route Code

parm.county

3-digit County Code

parm.dpbc

2-digit Delivery Point Barcode and 1-digit Check Digit

parm.mpnum

Matched Primary Number

parm.msnum

Matched Secondary Number

parm.auto_zone_ind

Carrier Route Rate Sort Indicator (Y or N)

parm.elot_num

Enhanced Line of Travel (eLOT) number

parm.elot_code

eLOT Ascending/Descending Flag (A/D)

Parsed Input

Description

ppnum

Primary Number

psnum

Secondary Number

prote

Rural Route Number

punit

Secondary Number Unit

ppre1

First or Left Pre-direction

ppre2

Second or Right Pre-direction

psuf1

First or Left Suffix

psuf2

Second or Right Suffix

ppst1

First or Left Post-direction

ppst2

Second or Right Post-direction

ppnam

Primary Name

Return

0 - The USPS Address Matching System resident

1 - The USPS Address Matching System issued a system error

2 - The USPS Address Matching System not ready

3 - CD-ROM has expired

Additional Information About Z4ADRINQ()

If parm.retcc is Z4_INVADDR, Z4_INVZIP, Z4_INVSTATE, Z4_INVCITY, Z4_NOTFND, or

Z4_MULTIPLE, then the return address fields will contain the input address. If the input address is

unambiguously a rural route, highway contract, PO box, or general delivery address, then the return fields

will contain the normalized version of the input address.

If parm.retcc is Z4_MULTIPLE, then parm.foot, parm.respn, and parm.stack are also returned by the

system. The parm.zipc and/or parm.cris fields may contain data if all records in the stack have the same

ZIP Code and/or carrier route ID.

If parm.retcc is Z4_SINGLE or Z4_DEFAULT, then all fields in the returned data section are returned by

the Address Matching System. The first record in the parm.stack structure will contain the ZIP+4 record

to which the system matched. This record may be used to access the individual fields from the matched

record, such as primary name, suffix, post-directional, etc.
Example

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <zip4.h>
ZIP4_PARM parm;
void main(void)
{

/* open The USPS Address Matching System */

if (z4open() != 0)

{

printf(“The USPS Address Matching System not resident.\n”); exit(5);

}

/* load input address parameters */

memset(&parm, 0, sizeof(parm));
strcpy(parm.iadl1,
”323 S 152ND ST”);

strcpy(parm.iad13,
”STE 200”);

strcpy(parm.iadl2,
”ACME TOOL AND DIE”);

strcpy(parm.iprurb,
””);

strcpy(parm.ictyi,
”OMAHA, NE 68154");

/* request address inquiry */

z4adrinq(&parm);

/* if a response found (either single or default) */

if(parm.retcc==Z4_SINGLE || parm.retcc==Z4_DEFAULT)

{

printf(“Found response.\n”);

printf(“Name:

%s\n”, parm.dadl2);

printf(“S Addr:

%s\n”, parm.dad13);

printf(“Addr:

%s\n”, parm.dadl1);

printf(“PRUrb:

%s\n”, parm.dprurb);

printf(“City:

%s\n”, parm.dctya);

printf(“ST:

%s\n”, parm.dstaa);

printf(“ZIP:

%s\n”, parm.zipc);

printf(“Addon:

%s\n”, parm.addon);

printf(“DPBC:

%s\n”, parm.dpbc);

printf(“Pre Dir:

%s\n”, parm.stack[0].pre_dir);

printf(“Str Name:
%s\n”, parm.stack[0].str_name);

printf(“Suffix:

%s\n”, parm.stack[0].suffix);

printf(“Post Dir:
%s\n”, parm.stack[0].post_dir);

printf(“Lacs Ind:
%c\n”, parm.stack[0].lacs_status);

}

/* close The USPS Address Matching System */
z4close();

exit(0)

}

Address Sort Key

The z4adrkey() function creates a sort key for an address. This function can be used in batch processes to

sort an input file in the order that addresses are contained on the Address Matching System data files.

However, the function does not sort your file; it produces a key field to assist your software in sortation.

Sorting an input file usually produces a dramatic increase in processing throughput.

Syntax

#include <zip4.h>

int z4adrkey(ZIP4_PARM *parm);

Input

The parm argument must point to a ZIP4_PARM structure. The following fields must be initialized before

calling the z4adrkey() function.

parm.iadl1

Street Address

parm.iadl2

Firm Name

parm.iprurb

Puerto Rican Urbanization Name

parm.ictyi

City or City/ State/ ZIP

parm.istai

State or empty

parm.izipc

ZIP or empty

Output

parm.adrkey

Address Sort Key

Note:
The contents and length of the address sort key are subject to change at any time. The key contains

binary data and should be used in its entirety for the sort process.

Return

0 - The USPS Address Matching System resident

1 - The USPS Address Matching System issued a system error

2 - The USPS Address Matching System not ready
Example

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <zip4.h>
ZIP4_PARM parm;

void main(void)

{

int i;

/* open The USPS Address Matching System */

if (z4open() != 0)

{

printf(“The USPS Address Matching System not resident.\n”);

exit(5);

}
/* load input address parameters */

memset(&parm, 0, sizeof(parm));
strcpy(parm.iadl1, ”323 S 152ND ST”);

strcpy(parm.iadl2, ”ACME TOOL AND DIE”);

strcpy(parm.ictyi, ”OMAHA, NE 68154");
/* request address sort key */

z4adrkey(&parm);
/* print the address sort key in hex */

for(i=0; i<sizeof(parm.adrkey); i++)

printf(“%02X“, parm.adrkey[i]);
printf(“\n”);
/* close The USPS Address Matching System */

z4close();

exit(0);

}

9-digit Inquiry

The z4xrfinq() (9-digit Inquiry) function commands the Address Matching System to perform an address

inquiry using an input 9-digit ZIP Code. Before using this function, the input 9-digit ZIP Code must be

copied into the parm.iad11 field outlined below. Following the 9-digit inquiry, the parm.retcc field

displays a return code summarizing the result of the inquiry. If an address response was found, standardized

address information can be found in the output fields described in the Address Inquiry function

description (see page 24).

Syntax

#include <zip4.h>

int z4xrfinq(ZIP4_PARM *parm);
Input

The parm argument must point to a ZIP4_PARM structure. The following field must be initialized before

calling the z4xrfinq() function:
parm.iadl1
9-digit ZIP Code.

Note:
Return Code 22 denotes multiple responses. The address fields contain the first of a stack of ten

possible responses (or matches). It is recommended that the first address in the output fields not

be used as a mailing address because it is not an exact match.

Output

parm.retcc

Response code

Z4_SINGLE

A single address was found

Z4_DEFAULT

A default address was found, but more specific addresses exist

Z4_NOTFND

No match found; considered a not found address

Z4_MULTIPLE

Multiple responses were found

Refer to the Address Inquiry function description for other output fields (see page 29).

Return

0 - The USPS Address Matching System resident

1 - The USPS Address Matching System issued a system error

2 - The USPS Address Matching System not ready

3 - The USPS Address Matching System has expired

Example

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <zip4.h>

ZIP4_PARM parm;

void main(void)

{

/* check for The USPS Address Matching System residence */

if(z4open() != 0)

{

printf(“The USPS Address Matching System not resident.\n”);

exit(5);

}

/* load input 9-digit ZIP parameter */

memset(&parm, 0, sizeof(parm));

strcpy(parm.iadl1, ”681642815");
/* request address inquiry */

z4xrfinq(&parm);
/* if a response found (either single or default) */

if(parm.retcc == Z4_SINGLE || parm.retcc == Z4_DEFAULT)

{

printf(“Found response.\n”);

printf(“Name:
%s\n”, parm.dadl2);

printf(“Addr:
%s\n”, parm.dadl1);

printf(“PRUrb:
%s\n”, parm.dprurb);

printf(“City:
%s\n”, parm.dctya);

printf(“ST:
%s\n”, parm.dstaa);

printf(“ZIP:
%s\n”, parm.zipc);

printf(“Addon:
%s\n”, parm.addon);

printf(“DPBC:
%s\n”, parm.dpbc);

}
/* close The USPS Address Matching System */

z4close();

exit(0);

}

Address Standardization

The z4adrstd() (Address Standardization) function instructs the Address Matching System to standardize

an address. This function can be used when a Z4_MULTIPLE response is returned from the z4adrinq()

function. Use this function to standardize an address from the stack, but use it with caution. The index

parameter is relative to zero and must be in increments of ten for each z4scroll() function called. Therefore,

the index will have a value between zero and parm.respn minus one. Do not use the offset into the

current stack of ten records.
When this function is called, the record corresponding to the index value is moved to the first position on

the stack (offset zero). If components from the ADDR_REC structure are needed for the current record

that was processed through z4adrstd(), they may be retrieved from the first stack record. Do not use the

modulus 10 of the index (index % 10) to retrieve the ADDR_REC components from the stack.

Note:
 This function should only be used when an operator is reviewing the multiple responses returned

and selecting the record to be standardized. Please be advised that using this function in an

unattended (batch) mode may result in inaccurate matches and possible failure to CASS certify.

Syntax
#include <zip4.h>

int z4adrstd(ZIP4_PARM *parm, int index)

Input
parm

Unmodified parameter list from previous call to z4adrinq().
index

Index of stack record to standardize address (refer to the description above).

This must be less than parm.respn.

Output

parm.dadl1
Standardized Street Address

parm.dadl2
Standardized Firm Name

parm.dprurb
Standardized Puerto Rican Urbanization Name

parm.dlast
Standardized City/State/ZIP

Return

0 - Success

1 - Failure (i.e., invalid index parameter)

2 - The USPS Address Matching System not ready

Example

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <zip4.h>

ZIP4_PARM parm;

void main(void)

{

/* check for The USPS Address Matching System residence */

if(z4open() != 0)

{

printf(“The USPS Address Matching System not resident.\n”);

exit(5);

}

/* load input address parameters */

memset(&parm, 0, sizeof(parm));

strcpy(parm.iadl1, ”DODGE ST”);

strcpy(parm.iadl2, ””);

strcpy(parm.iprurb,””);

strcpy(parm.ictyi, ”OMAHA NE”);
/* request address inquiry */

z4adrinq(&parm);
/* standardize second address */

z4adrstd(&parm, 1);
/* display address */

printf(“Found response.\n”);

printf(“Name:
%s\n”, parm.dadl2);

printf(“Addr:
%s\n”, parm.dadl1);

printf(“PRUrb:
%s\n”, parm.dprurb);

printf(“City:
%s\n”, parm.dctya);

printf(“ST:
%s\n”, parm.dstaa);

printf(“ZIP:
%s\n”, parm.zipc);

printf(“Addon:
%s\n”, parm.addon);

printf(“DPBC:
%s\n”, parm.dpbc);

/* close The USPS Address Matching System */

z4close();

exit(0);

}

Close the Address Matching System

The z4close() function closes the Address Matching System and is called when address inquiries have

been completed and the interface is no longer needed. During execution of this function, memory buffers

and file handles allocated during the z4open() function are de-allocated and closed.

Syntax

#include <zip4.h>

int z4close(void);

Input

None

Output

None

Return

0 - The USPS Address Matching System closed

1 - The USPS Address Matching System not resident

2 - The USPS Address Matching System not ready

Example

#include <stdio.h>

#include <zip4.h>

void main(void)

{

/* close The USPS Address Matching System */

if(z4close() == 0)

printf(“The USPS Address Matching System closed.\n”);

else

printf(“Error closing the USPS Address Matching System.\n”);

}
Read City/State File By Key

The z4ctyget() (Read City/State File By Key) function initiates a read of the City/State File. A specific

ZIP Code can be selected as a starting point in a read of the City/State File. To read subsequent records,

the Read City/State File Next function is used. For documentation on the City/State File, please refer to

the Address Information System Products Technical Guide, which is available from the USPS National

Customer Support Center’s Customer Support Department at 800-238-3150. It is also available on the

Internet at http:// ribbs.usps.gov/files/addressing/pubs

Syntax

#include <zip4.h>

int z4ctyget(CITY_REC *cityrec, char *zipcode);

Input

The CITYREC argument must point to a CITY_REC structure. The contents of the structure will be

altered to contain the first city for the requested ZIP Code. The ZIP Code argument must point to a valid

5-digit ZIP Code or “00000”

Output

None

Return

0 - Success

1 - Failure

2 - The USPS Address Matching System not ready
Read City/State File Next

The z4ctynxt() (Read City/State File Next) function reads subsequent records of the City/State File. It can

only be used after the z4ctyget() function has been called.
Note:
Multiple calls to z4ctynxt() can not be mixed with calls to other Address Matching System functions. This function is designed to be called after a z4ctyget() or previous z4ctynxt() function call. The results of the z4ctynxt() are undefined if it is called after any other AMS function call.
Syntax
#include <zip4.h>

int z4ctynxt(CITY_REC *cityrec);

Input

The CITYREC argument must point to a CITY_REC structure. The contents of the structure will be

altered to contain the next city.

Output

None

Return

0 - Success

1 - Failure

2 - The USPS Address Matching System not ready

Example

#include <stdio.h>

#include <stdlib.h>

#include <zip4.h>
CITY_REC city;
void main(void)

{

int i;

/* open The USPS Address Matching System */

if(z4open() != 0)

{

printf(“The USPS Address Matching System not resident.\n”);

exit(5);

}

/* read first city */

z4ctyget(&city, “00000”);

/* read 10 more cities */

for(i=0; i<10 && z4ctynext(&city) == 0; ++i)

{

printf(“%s %-28.28s %s %s\n”, city.zip_code, city.city_name,

city.state_abbrev, city.finance);
}
/* close The USPS Address Matching System */

z4close();

exit(0);

}

Read ZIP+4 File By Key

The z4adrget() (Read ZIP+4 File by Key) function is used to read the ZIP+4 File. For documentation on

the ZIP+4 File, please refer to the Address Information Products Technical Guide, which is available from

the USPS National Customer Support Center’s Customer Support Department at 800-238-3150. It is also

available on the Internet at http://ribbs.usps.gov/files/addressing/pubs

A specific postal finance number can be selected as a starting point in a read of the ZIP+4 File. To read

subsequent records, the z4adrnxt() function is used.
Syntax

#include <zip4.h>

int z4adrget(ADDR_REC *addrrec, char *finance);

Input

The ADDRREC argument must point to an ADDR_REC structure. The contents of the structure will be

altered to contain the first address for the requested postal finance number. The finance argument must

contain a valid postal finance number or “000000”

Output

None

Return

0 - Success

1 - Failure

2 - The USPS Address Matching System not ready

Example

See example code for “Read ZIP+4 File Next”.
Read ZIP+4 File Next

The z4adrnxt() (Read ZIP+4 File Next) function reads subsequent records of the ZIP+4 File. It can only

be used after the z4adrget() function has been called.
Note:
Multiple calls to z4adrnxt() can not be mixed with calls to other Address Matching System
functions. This function is designed to follow a z4adrget() or another z4drnxt() function call. The results of
z4drnxt() are undefined if it is called after any other AMS function

Syntax

#include <zip4.h>

int z4adrnxt(ADDR_REC *addrrec);

Input

The ADDRREC argument must point to a ADDR_REC structure. The contents of the structure will be

altered to contain the next address.

Output

None

Return

0 - Success

1 - Failure

2 - The USPS Address Matching System not ready

Example

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <zip4.h>

CITY_REC city;

ADDR_REC addr;

void main(void)

{

/* open The USPS Address Matching System */

if (z4open() != 0)

{

printf(“The USPS Address Matching System not resident.\n”);

exit(5);

}

/* read a city */

z4ctyget(&city, “00000”);
/* read first address record for this city */

z4adrget(&addr, city.finance);

/* read remaining addrs for this finance number */

while(z4adrnxt(&addr) == 0)

{

/* check if finance number has changed */

if (memcmp(addr.finance, city.finance, 6) != 0)

break;
/* Code to process the current address record. */
}
/* close The USPS Address Matching System */

z4close();

exit(0);
}
Get ZIP Codes from a City/State

The z4getzip() (Get ZIP Codes) from a City/State function retrieves a range of ZIP Codes for a city or

state and returns the valid high and the low values for the input city/state. The standardized form of the

input city/state as well as the finance number are also returned.

Note: All ZIP Codes within the range are not necessarily valid.

Syntax

#include <zip4.h>

int z4getzip(GET_ZIPCODE_STRUCT *parm);

Input

The parm argument must point to a GET_ZIPCODE_STRUCT structure. The contents of the structure

will be altered to contain the ZIP Code range for the input city/state.

parm.input_cityst
Input city/state to lookup

Output

parm.output_cityst
Standardized city/state

parm.low_zipcode
 Low ZIP Code value

parm.high_zipcode
High ZIP Code value

parm.finance_num
Finance number

Return

0 - Success

1 - Failure

Example

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <zip4.h>

GET_ZIPCODE_STRUCT parm;

void main(void)

{

int result;
/* open The USPS Address Matching System */

if (z4open() != 0)

{

printf(“The USPS Address Matching System not resident.\n”);

exit(5);

}
/* read a city */

strcpy(parm.input_cityst, “MEMPHIS TN”);

result=z4getzip(&parm);

/* Display the ZIP codes found */

if(result == 0)

{

printf(“CITY FOUND:
%s\n”,parm.output_cityst);

printf(“LOW ZIP:

%s\n”,parm.low_zipcode);

printf(“HIGH ZIP:
%s\n”,parm.high_zipcode);

printf(“FINANCE:

%s\n”,parm.finance_num);

}

/* close The USPS Address Matching System */

z4close();

exit(0);

}

Terminate Active Address Inquiry

The z4abort() (Terminate Active Address Inquiry) function terminates an active address inquiry and is

useful in real-time applications where each inquiry must be completed within a specified period of time.

This function would normally be called from within a timer interrupt handler The z4adrinq() call in progress is terminated by the function call.

Syntax

#include <zip4.h>

int z4abort(void);

Input

None

Output

None

Return

None

Get Date of ZIP+4 Database

The z4date() (Get Date of ZIP+4 Database) function returns the date of the ZIP+4 database and prints the date for PS Form 3553 (CASS certificate). The date is returned as an 8-byte character string in the “YYYYMMDD” format.
Syntax

#include <zip4.h>

int z4date(char *date);

Input

Address of field to return the date of the ZIP+4 database. This field must be at least nine bytes in length.

Output

The date of the ZIP+4 database. This field must be at least nine bytes in length.

Return

0 - Success

1 - Failure

2 - The USPS Address Matching System not ready

Example

#include <stdio.h>

#include <stdlib.h>

#include <zip4.h>

char date[9];

void main(void)

{

/* open The USPS Address Matching System */

if (z4open() != 0)

{

printf(“The USPS Address Matching System not resident.\n”);

exit(5);

}

/* get release date */

z4date(date);

printf(“Release date: %s\n”, date);
/* close The USPS Address Matching System */

z4close();

exit(0);

}

Get AMS Data Expiration
The z4GetDataExpireDays() (Get AMS Data Expiration) function instructs the Address Matching System

to return the number of days until the AMS database expires. Because the function can be used periodically to check the number of days remaining until database expiration, it is strongly recommended that you

integrate this function into your software.
Note:
This function replaces the z4expire() function.
Syntax

#include <zip4.h>
int z4GetDataExpireDays(void);

Input

None

Output

None

Return

-1 – The AMS database has expired. Otherwise, the number of days until the AMS database expires.
Example

#include <stdio.h>

#include <stdlib.h>

#include <zip4.h>

void main(void)

{

int days;

/* open The USPS Address Matching System */

if (z4open() != 0)

{

printf(“USPS AMS System failed to open.\n”);

exit(1);

}

/* get number of days until database expiration */

days = z4GetDataExpireDays();
if (days == -1)

printf(“AMS database has already expired.\n”);

else

printf(“%d days until AMS database expiration.\n”, days);

/* close The USPS Address Matching System */

z4close();

}
Get AMS Library Expiration

The z4GetCodeExpireDays() (Get AMS Library Expiration) function instructs the Address Matching System to return the number of days until the AMS library expires. Because the function can be used periodically to check the number of days remaining until library expiration, it is strongly recommended that you integrate this function into your software.

Syntax

#include <zip4.h>
int z4GetCodeExpireDays(void);

Input

None

Output

None

Return

-1 – The AMS library has expired. Otherwise, the number of days until the AMS library expires.
Example

#include <stdio.h>

#include <stdlib.h>

#include <zip4.h>

void main(void)

{

int days;

/* open The USPS Address Matching System */

if (z4open() != 0)

{

printf(“USPS AMS System failed to open.\n”);

exit(1);

}

/* get number of days until database expiration */

days = z4GetCodeExpireDays();
if (days == -1)

printf(“AMS library has already expired.\n”);

else

printf(“%d days until AMS library expiration.\n”, days);

/* close The USPS Address Matching System */

z4close();

}
Get CD-ROM Expiration Information

The z4expire() (Get CD-ROM Expiration Information) function instructs the Address Matching System

to return the number of days until the CD-ROM expires. Because the function can be used periodically to

check the number of days remaining until CD-ROM expiration, it is strongly recommended that you

integrate this function into your software.
Note:
The z4expire() function is maintained for continued compatibility with existing software.
However, it is deprecated and all software should begin to replace all occurrences of z4expire() with z4GetDataExpireDays().
Syntax

#include <zip4.h>

int z4expire(void);

Input

None

Output

None

Return

-1 - CD-ROM has expired. Otherwise, the function returns the number of days until CD-ROM expiration.

Example

#include <stdio.h>

#include <stdlib.h>

#include <zip4.h>

void main(void)

{

int days;

/* open The USPS Address Matching System */

if (z4open() != 0)

{

printf(“The USPS Address Matching System not resident.\n”);

exit(1);

}

/* get number of days until CD-ROM expiration */

days = z4expire();

if (days == -1)

printf(“CD-ROM has already expired.\n”);

else

printf(“%d days until CD-ROM expiration.\n”, days);

/* close The USPS Address Matching System */

z4close();

exit(0);

}

Get API Code Version

The z4ver() (Get API Code Version) function commands the program to retrieve the version string of the

API code. This string is in compliance with the CASS requirements for address-matching software

version information and may be used when generating a PS Form 3553 for mailing discounts.

Syntax

#include <zip4.h>

int z4ver(char *str);

Input

none

Output

str
pointer to data buffer to receive the string

Return

0 - Success

Example

#include <stdio.h>

#include <zip4.h>

void main(void)

{

char version[32];

/* get the Address Matching System version */

z4ver(version) ;

printf(“The Address Matching System version is %s\n”, version) ;

exit (0);

}

Multiple Response Stack

Scroll the Stack of Address Records

The z4scroll() (Scroll the Stack of Address Records) function commands the Address Matching System to

access additional stacks of ten address records each. The function is related to the z4adrinq() and z4xrfinq()

functions, which return up to ten records when the Z4_MULTIPLE or Z4_DEFAULT return codes are set.

When the parm.respn field contains a number greater than ten, your program can use this function to obtain

additional stacks of ten address records (up to the number of records specified in the parm.respn return field).This function may only be called immediately after a call to the z4adrinq() or z4xrfinq() functions.

Syntax

#include <zip4.h>

int z4scroll(parm);

Input

The parm argument must point to a ZIP4_PARM structure. This structure should not be modified after

the call to z4adrinq().

Output

The parm.stack field will be updated to contain the next ten records (fewer records may be returned if less

than ten records remain).

Return

0 - Success

1 - The USPS Address Matching System not installed

2 - The USPS Address Matching System not open

3 - Stack access not allowed

Example

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <zip4.h>

ZIP4_PARM parm;

void main(void)

{

int i;

/* open The USPS Address Matching System */

if (z4open())

{

printf(“Error opening The USPS Address Matching System\n”);

exit(1);

}

/* create parameter list and call The USPS Address Matching System */

memset(&parm, 0, sizeof(parm));

strcpy(parm.iadl1,
“350 5TH AVE”);

strcpy(parm.ictyi,
“NEW YORK NY”);

z4adrinq(&parm);

/* process all addresses returned by The USPS Address Matching System */

for(i=0; i<parm.respn; i++)

{

/* check if stack needs to be refreshed */

if (i != 0 && (i% 10) == 0)

{

if(z4scroll(&parm))

break;

}

/* examine each address returned by The USPS Address Matching System */

...

}

/* close The USPS Address Matching System */

z4close();

exit(0);

}

Get Last Error

The z4geterror() (Get Last Error) function retrieves the last error that was encountered after a failed

z4open () or z4opencfg() function call.

Syntax

#include <zip4.h>

int z4geterror(Z4_ERROR *pError);

Input

Pointer to an empty Z4_ERROR structure.

Output

pError will be populated with the last error that was encountered.

Return

The value of iErrorCode

#defines for the iErrorCode values and their meanings:

ERROR_FILE_OPEN
1
Error opening a file

ERROR_FILE_READ
2
Error reading a file

ERROR_FILE_WRITE
3
Error writing to a file

ERROR_FILE_FIND
4
Error finding a file

ERROR_FILE_EXPIRE
5
AMS library has expired

ERROR_FILE_SYNC
6
AMS Database files are out of sync

ERROR_SECURITY
7
AMS Security error

Example

#include <stdio.h>

#include <string.h>

#include <zip4.h>

int main(void)

{

Z4_ERROR errorparm;

Z4_ENV envparm;

memset(&errorparm, 0, sizeof(Z4_ERROR));

memset(&envparm, 0, sizeof(Z4_ENV));

if(z4open())

{

printf(“\nError opening USPS AMS API\n\n”);

z4getenv(&envparm);

z4geterror(&errorparm);

/* Detailed Error Information */

printf(“\n\nDETAILED ERROR INFORMATION\n”);

printf(“--------------------------\n”)

printf(“Error Message:
%s\n”, errorparm.strErrorMessage);

printf(“File Name:
%s\n”, errorparm.strFileName);

printf(“Diagnostics:
%s\n”, errorparm.strDiagnostics);

/* Detailed Environment Information */

printf(“\n\nDETAILED ENVIRONMENT INFORMATION\n”);

printf(“--------------------------------\n”);

printf(“Configuration File:
%s\n”, envparm.strConfigFile);

printf(“Address1:
%s\n”, envparm.address1);

printf(“AddrIndex:
%s\n”, envparm.addrindex);

printf(“CityState:
%s\n”, envparm.citystate);

printf(“CrossRef:
%s\n”, envparm.crossref);

printf(“System:

%s\n”, envparm.system);

printf(“eLOT:

%s\n”, envparm.elot);

printf(“eLOTIndex:
%s\n”, envparm.elotindex);

printf(“EWS Path:
%s\n”, envparm.ewspath);

printf(“eLOT Flag:
%s\n”, envparm.elotflag);

}

else

{

printf(“The USPS Address Matching System opened successfully\n”);
}

return 0;

}
Get Environment

The z4getenv() (Get Environment) function retrieves the environment for the Address Matching System.

Syntax

#include <zip4.h>

int z4getenv(Z4_ENV *pEnv);

Input

Pointer to an empty Z4_ENV structure.

Output

pEnv will be populated with the environment for the Address Matching System.

Return

0 - Success

Example

See example for function z4geterror().

Section 4: Footnote Flags

A
ZIP CODE CORRECTED

The address was found to have a different 5-digit ZIP Code than given in the submitted list. The

correct ZIP Code is shown in the output address.

B
CITY / STATE SPELLING CORRECTED

The spelling of the city name and/or state abbreviation in the submitted address was found to be

different than the standard spelling. The standard spelling of the city name and state abbreviation

are shown in the output address.

C
INVALID CITY / STATE / ZIP

The ZIP Code in the submitted address could not be found because neither a valid city, state, nor

valid 5-digit ZIP Code was present. It is also recommended that the requestor check the submitted

address for accuracy.

D
NO ZIP+4 ASSIGNED

This is a record listed by the United States Postal Service on the national ZIP+4 file as a nondeliverable location. It is recommended that the requestor verify the accuracy of the submitted

address.

E
ZIP CODE ASSIGNED FOR MULTIPLE RESPONSE

Multiple records were returned, but each shares the same 5-digit ZIP Code.

F
ADDRESS COULD NOT BE FOUND IN THE NATIONAL DIRECTORY FILE

DATABASE

The address, exactly as submitted, could not be found in the city, state, or ZIP Code provided. It

is also recommended that the requestor check the submitted address for accuracy. For example,

the street address line may be abbreviated excessively and may not be fully recognizable.

G
INFORMATION IN FIRM LINE USED FOR MATCHING

Information in the firm line was determined to be a part of the address. It was moved out of the

firm line and incorporated into the address line.

H
MISSING SECONDARY NUMBER

ZIP+4 information indicates this address is a building. The address as submitted does not contain

an apartment/suite number. It is recommended that the requestor check the submitted address and

add the missing apartment or suite number to ensure the correct Delivery Point Barcode (DPBC).

I
INSUFFICIENT / INCORRECT ADDRESS DATA

More than one ZIP+4 Code was found to satisfy the address as submitted. The submitted address

did not contain sufficiently complete or correct data to determine a single ZIP+4 Code. It is

recommended that the requestor check the address for accuracy and completeness. For example,

firm name, or institution name, doctor’s name, suite number, apartment number, box number,

floor number, etc. may be missing or incorrect. Also pre-directional or post-directional indicators

(North = N, South = S, East = E, West = W, etc.) and/or street suffixes (Street = ST, Avenue =

AVE, Road = RD, Circle = CIR, etc.) may be missing or incorrect.

J
PO BOX DUAL ADDRESS

The input address contained both a PO BOX address and a non-PO BOX address. A match was

made using the PO BOX address. For example, if the input address were 123 MAIN ST PO BOX

99, the output address would be PO BOX 99.

K
NON-PO BOX DUAL ADDRESS

The input address contained both a PO BOX address and a non-PO BOX address. A match was

made using the non-PO BOX address. For example, if the input address were 123 MAIN ST PO

BOX 99, the output address would be 123 MAIN ST.

L
ADDRESS COMPONENT CHANGED

An address component (i.e., directional or suffix only) was added, changed, or deleted in order to

achieve a match.

M
STREET NAME CHANGED

The spelling of the street name was changed in order to achieve a match.

N
ADDRESS STANDARDIZED

The delivery address was standardized. For example, if STREET was in the delivery address, the

system will return ST as its standard spelling.

P
BETTER ADDRESS EXISTS

The delivery address is matchable, but is known by another (preferred) name. For example, in

New York, NY, AVENUE OF THE AMERICAS is also known as 6TH AVE. An inquiry using a

delivery address of 55 AVE OF THE AMERICAS would be flagged with a Footnote Flag P.

R
NO MATCH DUE TO EWS

The delivery address is matchable, but the EWS file indicates that an exact match will be available

soon.

S
INCORRECT SECONDARY ADDRESS

The secondary information (i.e., floor, suite, apartment, or box number) does not match that on

the national ZIP+4 file. This secondary information, although present on the input address, was

not valid in the range found on the national ZIP+4 file.

T
MULTIPLE RESPONSE DUE TO MAGNET STREET SYNDROME

The search resulted in a single response; however, the record matched was flagged as having

magnet street syndrome and the input street name components (pre-directional, primary street

name, post-directional, and suffix) did not exactly match those of the record. A “magnet street” is

one having a primary street name that is also a suffix or a directional word, having either a postdirectional or a suffix (i.e., 2200 PARK MEMPHIS TN logically matches to a ZIP+4 record

2200-2258 PARK AVE MEMPHIS TN 38114-6610), but the input address lacks the suffix ‘AVE’

which is present on the ZIP + 4 record. The primary street name ‘PARK’ is a suffix word. The

record has either a suffix or a post-directional present. Therefore, in accordance with CASS

requirements, a ZIP + 4 Code must not be returned. The multiple response return code is given

since a “no match” would prevent access to the best candidate.

U
UNOFFICIAL POST OFFICE NAME

The city or post office name in the submitted address is not recognized by the United States

Postal Service as an official last line name (preferred city name), and is not acceptable as an

alternate name. This does denote an error and the preferred city name will be provided as output.

V
UNVERIFIABLE CITY / STATE

The city and state in the submitted address could not be verified as corresponding to the given 5-

digit ZIP Code. This comment does not necessarily denote an error; however, it is recommended

that the requestor check the city and state in the submitted address for accuracy.

W
INVALID DELIVERY ADDRESS

The input address record contains a delivery address other than a PO BOX, General Delivery, or

Postmaster 5-digit ZIP Code that is identified as a “small town default”. The United States Postal

Service does not provide street delivery for this ZIP Code. The United States Postal Service

requires use of PO BOX, General Delivery, or Postmaster for delivery within this ZIP Code.

X
UNIQUE ZIP CODE DEFAULT

Default match inside a unique ZIP Code.

Z
MATCH MADE USING THE ZIPMOVE PRODUCT DATA

The ZIPMOVE product shows which ZIP + 4 records have moved from one ZIP Code to another.

If an input address matches to a ZIP + 4 record which the ZIPMOVE product indicates as having

moved, the search is performed again in the new ZIP Code.

Section 4: Record Types

F
FIRM

This is a match to a Firm Record, which is the finest level of match available for an address.

G
GENERAL DELIVERY

This is a match to a General Delivery record.

H
BUILDING / APARTMENT

This is a match to a Building or Apartment record.

P
POST OFFICE BOX

This is a match to a Post Office Box.

R
RURAL ROUTE or HIGHWAY CONTRACT

This is a match to either a Rural Route or a Highway Contract record, both of which may have

associated Box Number ranges.

S
STREET RECORD

This is a match to a Street record containing a valid primary number range.

Section 4: Return Codes
10
INVALID DUAL ADDRESS

Information presented could not be processed in current format. Corrective action is needed. Be

sure that the address line components are correct. For example, the input address line may contain

more than one delivery address.

11
INVALID CITY/ST/ZIP

The ZIP Code in the submitted address could not be found because neither a valid city, state, nor

valid 5-digit ZIP Code was present. Corrective action is needed. It is also recommended that the

requestor check the submitted address for accuracy.

12
INVALID STATE

The state in the submitted address is invalid. Corrective action is needed. It is also recommended

that the requestor check the submitted address for accuracy.

13
INVALID CITY

The city in the submitted address is invalid. Corrective action is needed. It is also recommended

that the requestor check the submitted address for accuracy.

21
NOT FOUND

The address, exactly as submitted, could not be found in the national ZIP+4 file. It is recommended that the requestor check the submitted address for accuracy. For example, the street

address line may be abbreviated excessively and may not be fully recognizable.

22
MULTIPLE RESPONSE

More than one ZIP+4 Code was found to satisfy the address submitted. The submitted address did

not contain sufficiently complete or correct data to determine a single ZIP+4 Code. It is recommended that the requestor check the address for accuracy and completeness. Address elements may be missing
31
EXACT MATCH.
Single response based on input information. No corrective action is needed since an exact match

was found in the national ZIP+4 file.

32
DEFAULT MATCH

A match was made to a default record in the national ZIP+4 file. A more specific match may be

available if a secondary number (i.e., apartment, suite, etc.) exists.

Appendix A - Interface Definition

#ifndef ZIP4_H

/* avoid redefinition
*/

#define ZIP4_H

#define RELVER
0xabcdef03L

/***/

/* This record describes an address record. The record format is */

/* the same as the USPS ZIP+4 File. Please see the USPS Address */

/* Information Products Technical Guide for information on this record. */

/* NOTE:All ‘char’ array fields contain an extra byte (+1) for the null */

/* terminator.

 */

/***/

typedef struct

{

char
detail_code;

/* copyright detail code

*/

char
zip_code[5+1];

/* zip code

*/

char
update_key[10+1];
/* update key number

*/

char
action_code;

/* action code

*/

char
rec_type;

/* record type

*/

char
carr_rt[4+1];

/* carrier route

*/

char
pre_dir[2+1];

/* pre-direction abbrev

*/

char
str_name[28+1];

/* street name

*/

char
suffix[4+1];

/* suffix abbrev

*/

char
post_dir[2+1];

/* post-direction abbrev

*/

char
prim_low[10+1];

/* primary low range

*/

char
prim_high[10+1];

/* primary high range

*/

char
prim_code;

/* primary even odd code

*/

char
sec_name[40+1];

/* bldg or firm name

*/

char
unit[4+1];

/* secondary abbreviation

*/

char
sec_low[8+1];

/* secondary low range

*/

char
sec_high[8+1];

/* secondary high range

*/

char
sec_code;

/* secondary even odd code

*/

char
addon_low[4+1];

/* add on low

*/

char
addon_high[4+1];

/* add on high

*/

char
base_alt_code;

/* base alternate code

*/

char
lacs_status;

/* LACS converted status

*/

char
finance[6+1];

/* finance code

*/

char
state_abbrev[2+1];
/* state abbreviation (not filled)
*/

char
county_no[3+1];

/* county number

*/

char
congress_dist[2+1];
/* congressional district

*/

char
municipality[6+1];
/* municip. city/state key (not filled)*/

char
urbanization[6+1];
/* urb. city/state key

*/

char
last_line[6+1];

/* last line city/state key

*/

} ADDR_REC;

/*
NOTE: The GovtBldgInd (Government Building Indicator) field is not*/

/*
available in the ADDR_REC structure.

 */

/**/

/*
This record describes a city/state record. The record format is the */

/*
same as the USPS City State File. Please see the USPS Address
 */

/*
Infomation Products Technical Guide for information on this record. */

/*
NOTE: All ‘char’ array fields contain an extra byte (+1) for the
 */

/*
null terminator.

 */

/**/

typedef struct

{

char
detail_code;

/* copyright detail code

*/

char
zip_code[5+1];

/* zip code

*/

char
city_key[6+1];

/* city/state key

*/

char
zip_class_code;

/* zip classification code

*/

/* blank = non-unique zip

*/

/* M=APO/FPO military zip

*/

/* P=PO BOX zip

*/

/* U=Unique zip

*/

char
city_name[28+1];

/* city/state name

*/

char
city_abbrev[13+1];
/* city/state name abbrev

*/

char
facility_cd;

/* facility code

*/

/* A=Airport mail facility

*/

/* B=Branch

*/

/* C=Community post office

*/

/* D=Area distrib. center

*/

/* E=Sect. center facility

*/

/* F=General distrib. center

*/

/* G=General mail facility

*/

/* K=Bulk mail center

*/

/* M=Money order unit

*/

/* N=Non-postal name

*/

/* community name,

*/

/* former postal facility,

*/

/* or place name

*/

/* P=Post office

*/

/* S=Station

*/

/* U=Urbanization

*/

char
mailing_name_ind;
/* mailing name indicator

*/

/* Y=Mailing name

*/

/* N=Non-mailing name

*/

char
last_line_num[6+1];
/* preferred last line key

*/

char
last_line_name[28+1];
/* preferred city name

*/

char
city_delv_ind;

/* city delivery indicator

*/

/* Y=Office has city

*/

/* delivery carrier rts

*/

/* N=Office does not have

*/

/* city delivery carrier

*/

/* routes

*/

char
auto_zone_ind;

/* automated zone indicator

*/

/* A=CR Sort Rates Apply

*/

/* Merge Allowed

*/

/* B=CR Sort Rates Apply

*/

/* Merge Not Allowed

*/

/* C=CR Sort Rates Do Not Apply
*/

/* Merge Allowed

*/

/* D=CR Sort Rates Do Not Apply
*/

/* Merge Not Allowed

*/

char
unique_zip_ind;

/* unique zip name indicator

*/

/* Y=Unique zip name

*/

/* blank=not applicable

*/

char
finance[6+1];

/* finance code

*/

char
state_abbrev[2+1];
/* state abbreviation

*/

char
county_no[3+1];

/* county number

*/

char
county_name[25+1];
/* county name

*/

} CITY_REC;

/**/

/* Parameter list for z4adrinq() and z4xrfinq() calls. Reserved
 */

/* fields are for future use, do not access these fields. Size of his */

/* record cannot be changed.

 */

/* NOTE: Only fields containing +1 in the length are null terminated. */

/**/

typedef struct

{

 /*********input data*******************/

char
rsvd0[4];

/* reserve fore future use

*/

char
iadl1[50+1];
/* input delivery address

*/

char
iadl2[50+1];
/* input firm name

*/

char
ictyi[50+1];
/* input city

*/

char
istai[2+1];
/* input state

*/

char
izipc[10+1];
/* input ZIP+4 code

*/

char
iprurb[28+1];
/* input urbanization name

*/

char iad13[50+1];
/* input second address line

*/

char
rsvd1[98];

/* reserved for future use

*/

/**********returned data **************/

char
dadl3[50+1];
/* standardized 2nd delivery address*/

char
dadl1[50+1];
/* standardized delivery address
*/

char
dadl2[50+1];
/* standardized firm name

*/

char
dlast[50+1];
/* standardized city/state/zip
*/

char
dprurb[28+1];
/* output PR urbanization name
*/
char
dctys[28+1];
/* main post office city

*/

char
dstas[2+1];
/* main post office state

*/

char
dctya[28+1];
/* standardized city

*/

char
abcty[13+1];
/* standardized city abbreviation
*/

char
dstaa[2+1];
/* standardized state

*/

char
zipc[5+1];

/* 5-digit zip code

*/

char
addon[4+1];
/* ZIP+4 addon code

*/

char
dpbc[3+1];

/* delivery point bar code

*/

char
cris[4+1];

/* carrier route

*/

char
county[3+1];
/* FIPS county code

*/

short respn;

/* number of returned responses
*/

char
retcc;

/* return code

*/

char
adrkey[12];
/* address key (for indexing)
*/

char
auto_zone_ind;
/* A, B, C or D

*/

char
elot_num[4+1];
/* eLOT Number

*/

char
elot_code;

/* eLOT Ascending/Descending Flag
*/

/********* parsed input data*********/

char
ppnum[10+1];
/* Primary Number

*/

char
psnum[8+1];
/* Secondary Number

*/

char
prote[3+1];
/* Rural Route Number

*/

char
punit[4+1];
/* Secondary Number Unit

*/

char
ppre1[2+1];
/* First or Left Pre-direction
*/

char
ppre2[2+1];
/* Second or Right Pre-direction
*/

char
psuf1[4+1];
/* First or Left Suffix

*/

char
psuf2[4+1];
/* Second or Right Suffix

*/

char
ppst1[2+1];
/* First or Left Post-direction
*/

char
ppst2[2+1];
/* Second or Right Post-direction
*/

char
ppnam[28+1];
/* Primary Name

*/

char
mpnum[10+1];
/* Matched primary number.

*/

char
msnum[8+1];
/* Matched secondary number

*/

char
pmb[3+1];

/* PMB Unit Designator

*/

char
pmbnum[8+1];
/* PMB Number

*/

char
rsvd2[86];

/* reserved for future use

*/

struct {

/************ footnotes**************/

char
a;

/* zip corrected

*/

char
b;

/* city/state corrected

*/
char
c;

/* invalid city/state/zip

*/

char
d;

/* no zip assigned

*/

char
e;

/* ZIP assigned for mult response
*/

char
f;

/* no zip available

*/

char
g;

/* part of firm moved to address
*/

char
h;

/* secondary number missing

*/

char
i;

/* insufficient/incorrect data
*/

char
j;

/* dual input - used PO BOX

*/

char
k;

/* dual input - used non-PO BOX
*/

char
l;

/* del addr component add/del/chg
*/

char
m;

/* street name spelling changed
*/

char
n;

/* delivery addr was standardized
*/

char
o;

/* reserved for future use

*/

char
p;

/* better delivery addr exists
*/

char
q;

/* reserved for future use

*/

char
r;

/* no match caused by EWS

*/

char
s;

/* invalid secondary number

*/

char
t;

/* magnet street

*/

char
u;

/* unofficial PO name

*/

char
v;

/* unverifiable city/state

*/

char
w;

/* small town default

*/

char
x;

/* unique ZIP Code default

*/

char
y;

/* reserved for future use

*/

char
z;

/* ZIP Move Match

*/

char
rsvd3[6];

/* reserved for future use

*/

} foot;

ADDR_REC stack[10];
/************record stack*************/

char rsvd4[194];

/* reserved for future use
 */

} ZIP4_PARM;

/**/

/* Parameter list for z4getzip()

 */

/* NOTE: Only fields containing +1 in the length are null terminated. */

/**/

typedef struct

{

char
input_cityst[50+1];

char
output_cityst[50+1];

char
low_zipcode[5+1];

char
high_zipcode[5+1];

char
finance_num[6+1];

} GET_ZIPCODE_STRUCT;

/**/
/* Error Codes for the iErrorCode variable inside the Z4_ERROR */

/*
structure

 */

/**/

#define ERROR_FILE_OPEN 1
/* Error opening a file

*/

#define ERROR_FILE_READ 2
/* Error reading a file
*/

#define ERROR_FILE_WRITE
3
/* Error writing to a file
*/

#define ERROR_FILE_FIND
4
/* Error finding a file
*/

#define ERROR_FILE_EXPIRE
5
/* AMS library has expired
*/

#define ERROR_FILE_SYNC
6
/* AMS Database files out of sync*/

#define ERROR_SECURITY

7
/* AMS Security Error

*/

/**/

/* Parameter list for z4geterror()

 */

/* NOTE: Only fields containing +1 in the length are null terminated */

/**/

typedef struct

{

int
iErrorcode;

/* Error Code

*/

char
strErrorMessage[100+1];
/* Error Message

*/

int
iFileCode;

/* File Code

*/

char
strFileName[26+1];

/* File Name

*/

char
strDiagnostics[300+1];

/* Diagnostic Message
*/

} Z4_ERROR;

/**/

/*
Paramter list for z4getenv()

 */

/*
NOTE: Only fields containing +1 in length are null terminated */

/**/

typedef struct

{

char
strConfigFile[300+1];

char
address1[300+1];
/*Contains the full path of the ZADRFLE.DAT file*/

char
addrindex[300+1]; /*Contains the full path of the ZADRFLE.NDX file*/

char
cdrom[300+1];
/*Contains the drive letter of the CD-ROM drive */

/*that contains the ZIP+4/carrier route data */

/*May be blank

*/

char
citystate[300+1]; /*Contains the full path of the following files:*/

/*CTYSTATE.DAT - CITYSTATE.NDX

*/

/*ZIP5FLE.DAT - ZIP5FLE.NDX

*/

char
crossref[300+1];
/*Contains full path of the ZXREFDTL.DAT file
*/

char
system[300+1];
/*Contains the full path of the Z4CXLOG.DAT file*/

char
elot[300+1];
/*Contains the full path of the eltrvfle.dat file*/

char
elotindex[300=1]; /*Contains the full path of the eltrvfle.ndx file*/

char
ewspath[300+1];
/*Contains the full path of the ews.txt file
*/

char
rsvd1[301];
/*reserved for future use

*/

char
elotflag;

char
dpvflag;

}Z4_ENV;

/**/

/* Parameter list for z4opencfg()

 */

/* NOTE: Only fields containing +1 in the length are null terminated. */

/**/

/*Use of this structure will replace a physical copy of the configuration */

/*file on the hard drive

 */

typedef struct

{

char
*address1; /*Contains the full path of the ZADRFLE.DAT file */

char
*addrindex;/*Contains the full path of the ZADRFLE.NDX file */

char
*cdrom; /*Contains the drive letter of the CD-ROM drive that*/

 /*contains the ZIP+4/carrier route data;may be blank*/

char
*citystate;/*Contains the full path of the following files: */

 /*CTYSTATE.DAT - CTYSTATE.NDX

 */

 /*ZIP5FILE.DAT - ZIP5FLE.NDX

 */

char
*crossref;
/*Contains the full path of the ZXREFDTL.DAT file */

char
*system;
/*Contains the full path of the Z4CXLOG.DAT file */

char
*elot;
/*Contains the full path of the ELTRVFLE.DAT file */

char
*elotindex; /*Contains the full path of the ELTRVFLE.ND file */

char
*ewspath;
/*Contains the full path of the EWS.TXT file */

char
*dpvpath
/*Contains the full path of the dpv files

 */

}CONFIG_PARM;

typedef struct

{

char
rsvd1[50];
/*reserved for future use

 */

short status;
/*1 - Used value point to by fname

 */

/*2 - Used values in CONFIG_PARM

 */

/*9 - No values found. Search for z4config.dat
 */

char
*fname;
/*pointer to a NULL terminated string that
 */

/*contains the full path and filename for a custom */

/*config file. If fname contains a leading space */

/*or NULL then it is ignored and the CONFIG_PARM */

/*is evaluated for path names

 */

CONFIG_PARM config;/*Contains the path name for the config file
 */

char
elotflag;
/*Y Enables LOT else Disable eLOT

 */

char
systemflag;
/*Indicates open option

 */
char
rsvd2[49];
/*reserved for future use

 */

}Z4OPEN_PARM

/***/

/*Z4OPEN_PARM.status values for z4opencfg() */

/***/

#define
Z4_FNAME 1
/*Used the value in fname as the path and filename */

#define
Z4_CONFIG
2 /*Used the paths in the CONFIG_PARM structure
*/

#define
Z4_SEARCH
9 /*Used neither, searched for z4config.dat
*/

/***/

/*
Return Codes for z4adrinq() and z4xrfinq() calls

 */

/***/

#define
Z4_INVADDR
10
/* invalid address

*/

#define
Z4_INVZIP
11
/* invalid ZIP Code

*/

#define
Z4_INVSTATE 12
/* invalid state code

*/

#define
Z4_INVCITY
13
/* invalid city

*/

#define
Z4_NOTFND
14
/* address not found

*/

#define
Z4_MULTIPLE 22
/* multiple response - no default

*/

#define
Z4_SINGLE
31
/* single response - exact match

*/

#define
Z4_DEFAULT
32
/* default response

*/

/***/

/*
Function prototypes for the ZIP+4 retrieval engine.

 */

/***/

#if defined(OS2_32)

#define Z4FUNC

#elif defined(WIN32)

#define Z4FUNC _cdecl

#elif defined(_WINDOWS) || defined(_WINDLL)

#define Z4FUNC __far __pascal __export

#elif defined(OS2)

#define Z4FUNC _far _pascal _loadds _export

#elif defined(_MAC)

#define Z4FUNC

#elif defined(ANSI_STRICT) || defined(UNIX) || defined(I370)

#define Z4FUNC

#else

#define Z4FUNC _cdecl

#endif

int
Z4FUNC z4ready(void);

/* check presence of retrieval engine */

int
Z4FUNC z4remove(void);

/* terminate the retrieval engine
 */

int
Z4FUNC z4open(void);

/* open the retrieval engine for use */

int
Z4FUNC z4opencfg(Z4OPEN_PARM *);/*open with custom parameters */

int
Z4FUNC z4close(void);

/* close the retrieval engine
 */

int
Z4FUNC z4abort(void);

/* abort the current inquiry
 */

int
Z4FUNC z4adrinq(ZIP4_PARM *); /* address inquiry

 */

int
Z4FUNC z4scroll(ZIP4_PARM *); /* address inquiry

 */

int
Z4FUNC z4adrkey(ZIP4_PARM *); /* address key (for indexing)
 */

int
Z4FUNC z4xrfinq(ZIP4_PARM *); /* nine digit cross reference inquiry */

int
Z4FUNC z4adrstd(ZIP4_PARM *, int);
/* address standardization
 */
int
Z4FUNC z4ctyget(CITY_REC *, void *);/* get first city for a state */
int
Z4FUNC z4ctynxt(CITY_REC *);

/* get next city for a state
 */

int
Z4FUNC z4adrget(ADDR_REC *, void *);/* get first address for a fin. no */

int
Z4FUNC z4adrnxt(ADDR_REC *);

/* get next address for a fin. no */

int
Z4FUNC z4date(char *);

/* get date of ZIP+4 database
 */

int
Z4FUNC z4GetDataExpireDays(void);
/* number of days until data expire */

int
Z4FUNC z4GetCodeExpireDays(void);
/* number of days until code expire */
int
Z4FUNC z4expire(void);

/* Deprecated. Use GetDataExpireDays() */

int
Z4FUNC z4getzip(GET_ZIPCODE_STRUCT*);/* get zip code range for cityst */

int
Z4FUNC z4ver(char *);

/* get the version of the API code */

int
Z4FUNC z4geterror(Z4_ERROR *);
/* get the last error msg and code */

int
Z4FUNC z4getenv(Z4_ENV *);

/* get the environment for AMS */

#endif /* ZIP4_H */

Appendix B – File Names and Locations
Z4CONFIG.DAT

Data file used to specify the location of the Address Matching System data files. You are responsible for

creating this file, or you may use the skeleton file provided with the Developer’s Kit. This file should be

located in the current working directory of the application using the API.

SAMPLE Z4CONFIG.DAT

APPLICATION

OTHER - ZIP+4

COMPUTER

OTHER

ADDRESS1

D:\AMSDATA\

ADDRESS2

ADDRESS3

ADDRINDEX

D:\AMSDATA\

CDROM

CITYSTATE

D:\AMSDATA\

CROSSREF

D:\AMSDATA\

SYSTEM

C:\AMS_KIT\

TABLE

USER

ADDR1SIZE

ADDR2SIZE

ADDR3SIZE

EWSPATH

D:\AMSDATA\

Depending on the capacity of your hard drive, copy the files identified in the next step from the CDROM.

Directory and drive listings should be entered according to the specific computer platform being

used. Each directory listing must contain a trailing directory delimiter. See the Section 2, Installation

Procedures, for a sample Z4CONFIG.DAT listing for each supported computer platform.

SAMPLE Z4CONFIG.DAT LINE DESCRIPTION

Sample File Line

Description

APPLICATION

Not used by the Address Matching System API

COMPUTER

Not used by the Address Matching System API

ADDRESS1

Contains the full path of the ZADRFLE.DAT file

ADDRESS2

Must be present and empty

ADDRESS3

Must be present and empty

ADDRINDEX

Contains the full path of the ZADRFLE.NDX file

CDROM

Contains the drive letter of the CD-ROM drive that contains the

ZIP+4/ carrier route data; this listing may be blank

CITYSTATE

Contains the full path of the following files:

CTYSTATE.DAT

CTYSTATE.NDX

ZIP5FLE.DAT

ZIP5FLE.NDX

CROSSREF

Contains the full path of the following files:

ZXREFDTL.DAT

LTRVFLE.DAT

LTRVFLE.NDX

SYSTEM

Contains the full path of the Z4CXLOG.DAT file

TABLE

Not used by the Address Matching System API

USER

Not used by the Address Matching System API

ADDR1SIZE

Not used by the Address Matching System API

ADDR2SIZE

Not used by the Address Matching System API

ADDR3SIZE

Not used by the Address Matching System API

EWSPATH

Contains the full path of the EWS.TXT file

Note:
 If you change the location of any of the files in this list, you must also change the corresponding

path in your Z4CONFIG.DAT.

Address Matching System API User Guide-January 2004 12
Address Matching System API User Guide • January 2004

2

