
Address Matching System API User Guide • August 2011 1

Table of Contents

Section 1: Introduction and Overview..3

USPS® Address Matching System Developer’s Kit..3

Address Matching System Technical Support ...3

Installation Procedures for Windows (32 Bit) ..4

Installation Procedures for SUN UNIX (32 Bit) ...6

Installation Procedures for SUN UNIX (64 Bit) ...8

Installation Procedures for AIX UNIX..10

Installation Procedures for LINUX (32 Bit) ...12

Installation Procedures for LINUX (64 Bit) ...14

Section 2: Coding Requirements ...16

Thread Safety ..16

Process Safety...16

Stop Processing / False Positive Events ...16

Function Call Order ...17

Section 3: API Functions..18

Open the Address Matching System with Special Parameters..19

Address Inquiry...22

Address Sort Key...28

9-digit Inquiry ...30

11-digit Inquiry ...32

Address Standardization ...34

Close the Address Matching System ...36

Read City/State File By Key..37

Read City/State File Next..38

Read ZIP+4 File By Key...40

Read ZIP+4 File Next...41

Read ZIP+4 File Previous..43

Get ZIP Codes from a City/State ..45

Terminate Active Address Inquiry...47

Get Date of ZIP+4 Database..48

Get AMS Data Expiration...50

Get AMS Library Expiration...52

Address Matching System API User Guide • August 2011 2

Get API Code Version...54

Multiple Response Stack ...55

Get Last Error...57

Get Environment ...59

Retrieving the LACS Security KeyLink® ..60

Checking for LACS functionalityLink ..63

Disabling the LACS Security KeyLink® ...66

SUITE Database DateLINK™ ..69

SUITE Error CodeLINK™ ..71

SUITE Error MessageLINK™ ..72

SUITE QueryLINK™ ..74

Abbreviated Street Address Query..76

Section 4: Footnote Flags ...78

Section 5: Record Types...81

Section 6: Return Codes..82

Appendix A: Interface Definition..83

Appendix B: GDEV Application ...94

Appendix C: DPV® ..95

Error Values ...95

Error Codes ..95

Database Tables ...96

Database Table Options ...96

Data Types ..97

Interface Overview..98

Notes ...102

DPV® Sample...103

Section 1: Introduction and Overview

Address Matching System API User Guide • August 2011 3

Section 1: Introduction and Overview

The USPS® Address Matching System Application Programming Interface User Guide is the primary reference
document for the USPS National Customer Support Center’s Address Matching System product. The guide
contains installation instructions for each platform as well as function descriptions.

The USPS® Address Matching System (AMS) is an application programming interface (API). As such, this guide
should be used when the user wants to interface an application with the Address Matching System.

USPS® Address Matching System Developer’s Kit

The USPS Address Matching System Developer’s Kit contains the following:

• API library(s) for each specific computer platform
• Interface definition file (ZIP4.H)
• Test utility (SAMPLE.EXE)
• Test utility source code
• User documentation

The test utility can be used to ensure that the Address Matching System and data files have been installed correctly
and to provide access to our matching logic, which displays the standardized address returned by the matching
engine. This enables you to verify the accuracy of the ZIP+4 results returned from your product.

The AMS software, including, but not limited to, .DLLs, shared objects and static objects all expire and cease
functionality based on USPS Coding Accuracy Support System (CASSTM) guidelines. The AMS software expires
July 31st each year. The AMS data expires 105 days from the release date of the DVD, which is the 15th day of each
month.

During your development cycle and subsequent updates of your software, you should compile your software with
the AMS library. The AMS library will handle any necessary interface with the DPV® library, the SuiteLink® library
and the KeyManager library.

Address Matching System Technical Support

If there are any questions regarding the Address Matching System API, please call the USPS’ National Customer
Support Center, Address Matching System Technical Support at 1-877-640-0724. Hours of operation are 7am to
5pm Monday through Friday CST.

Section 1: Introduction and Overview

Address Matching System API User Guide • August 2011 4

Installation Procedures for Windows (32 Bit)

1. Create a directory on your hard drive in which to store the API files.

Ex: MD C:\AMS

2. Copy the Address Matching System files to your hard drive.

The AMS Product is distributed on DVD. The AMS files are located in the corresponding
directory below:

[DVD]\<PRODUCT TYPE>\dev_kits\w32\

All of the files in this directory are encrypted and must be unencrypted before use.

There are two (2) utility programs on the DVD that will unencrypt files.

a. GDEV – See Appendix B for description and use
b. dev_w32.exe located in the dev_kits directory

 Ex: DEV_W32 CUST_ID OUTPUT_PATH PRODUCT_FILE

i. OUTPUT_PATH is the directory created in step 1.
ii. PRODUCT_FILE is the file from the list in step 6. This should not include any directory

paths.

The installation program must be executed from within the DVD directory. This step needs to be performed
once for each file listed in the file description in step 6.

Note: A customer ID (CUST_ID) should be obtained from Address Matching System Technical Support.
The customer ID must be entered in uppercase letters. The customer ID provided by Address Matching
System Technical Support will change each month. We do not recommend hard-coding the customer ID
into an install program. For program installation, you may obtain a unique customer ID from Address
Matching System Technical Support. This unique customer ID will not change for the duration of the AMS
API license unless otherwise specified.

3. Run SAMPLE.EXE to test AMS.

Select the option to manually enter the paths.

4. Use SAMPLE.C as an example to create your own API application.

5. Refer to Section 3, API Functions, to test other API function commands.

6. The following is an explanation of the API files for W32:

a. ZIP4_W32.DLL ZIP4 dynamic-link library

b. ZIP4_W32.LIB Stub library to link with the user application

c. ZIP4.H Interface header file

d. Z4CONFIG.DAT File location file

e. Z4CXLOG.DAT Date time file

Section 1: Introduction and Overview

Address Matching System API User Guide • August 2011 5

f. SAMPLE.C Sample C source file

g. SAMPLE.H Sample header file

h. SAMPLE.EXE Sample executable

i. KEYMGR3.DLL Key manager dll

Special Notes for Windows (32 Bit)

The Windows 32-bit version of the Address Matching System DLL was built with all export functions having the
‘_cdecl’ calling convention, which has caused problems with some programming languages that do not support this
convention. To provide access to the address matching routines in the DLL for non C and C++ languages, the DLL
also contains a set of routines with the proper DLL calling convention ‘_stdcall.’ These routines have separate
names from the original routines to preserve linkage with existing programs, and the new names are a concatenation
of the original function name and ‘STD,’ which implies the _stdcall calling convention, e.g.,

_cdecl function name _stdcall function name

z4opencfg() z4opencfgSTD()

z4adrinq() z4adrinqSTD()

z4close() z4closeSTD()

All of the _stdcall functions map directly to the original functions, so there is no loss in functionality. All existing
functions have an associated _stdcall version, and all future additions to the DLL will contain both a _cdecl version
and a _stdcall version.

Section 1: Introduction and Overview

Address Matching System API User Guide • August 2011 6

Installation Procedures for SUN UNIX (32 Bit)

1. Create a directory on your hard drive in which to store the API files.

Ex: mkdir /usr/src/ams

2. Copy the Address Matching System files to your hard drive.

The AMS product is distributed on DVD. The AMS files are located in the corresponding
directory below:

[DVD]/<PRODUCT TYPE>/dev_kits/sun/

All of the files in this directory are encrypted and must be unencrypted before use.

There are two (2) utility programs on the DVD that will unencrypt the files.

a. GDEV – See Appendix B for description and use.
b. dev_sun.exe is located in the dev_kits directory

Ex: DEV_SUN.EXE CUST_ID OUTPUT_PATH PRODUCT_FILE

i. OUTPUT_PATH is the directory created in step 1.
ii. PRODUCT_FILE is a file from the list in step 6. This should not include any directory paths.

The installation program must be executed from within the DVD directory. This step needs to be
performed once for each file listed in the file description in step 6 on the next page.

Note: A customer ID (CUST_ID) should be obtained from Address Matching System Technical Support.

The customer ID must be entered in uppercase letters.

 The customer ID provided by Address Matching System Technical Support will change each

month. We do not recommend hard-coding the customer ID into an install program. For program
installation, you may obtain a unique customer ID from Address Matching System Technical
Support. This unique customer ID will not change for the duration of the AMS API license unless
otherwise specified.

3. Run SAMPLESH and SAMPLEST to test the Address Matching System.

a. CHMOD on SAMPLESH and SAMPLEST to rwx.
b. CHMOD on Z4CXLOG.DAT to rw.
c. Select the option to manually enter the paths

4. Use SAMPLE.C as an example to create your own API application.

5. Refer to Section 3, API Functions, to test other API function calls.

6. The following is an explanation of the API files for SUN UNIX:

a. LIBZ4SUN.SO ZIP4 shared library

b. ZIP4_SUN.A Static link library; not recommended

c. ZIP4.H Interface header file

d. Z4CONFIG.DAT File location file

e. Z4CXLOG.DAT Date time file

Section 1: Introduction and Overview

Address Matching System API User Guide • August 2011 7

f. SAMPLE.C Sample C source file

g. SAMPLE.H Sample header file

h. SAMPLESH Sample executable linked with LIBZ4SUN.SO

i. SAMPLEST Sample executable built with ZIP4_SUN.A

j. LIBKEYMGR.SO.3 Key manager shared library

Special Notes for SUN UNIX (32 Bit)

The Address Matching System DVD uses the ISO9660 file-system format, which stores file names in uppercase
letters with a version control number appended to the end. The API requires that the DVD file names appear in
lowercase letters without the version number. Some versions of UNIX will automatically accommodate file name
conversion during the mount process, but some require the user to specify the conversion explicitly with the options
of the “mount” command. Please see the man pages on mount for more information on these options.

The Address Matching System SUN API Developer’s Kit contains both a static-link and a shared library.
The static-link library is provided for compatibility with older programs written before the shared library was
available. The USPS does not recommend use of the static-link library because logic changes are often made to the
API, and the user would have to re-link the executable file with the AMS static-link library every time there is an
update. Also, in compliance with CASS rules, the API code is set to expire at the end of the current CASS cycle,
each August. If this date is reached without re-linking with a newer API, a user’s application will stop functioning.

To avoid these problems the USPS recommends using the AMS shared library so that user applications can gain
immediate access to any logic changes simply by installing the new shared library. User applications do not need to
be re-linked when a new shared library is provided on DVD updates.

Section 1: Introduction and Overview

Address Matching System API User Guide • August 2011 8

Installation Procedures for SUN UNIX (64 Bit)
1. Create a directory on your hard drive in which to store the API files.

 Ex. mkdir /usr/src/ams

2. Copy the Address Matching System files to your hard drive.

The AMS product is distributed on DVD. The AMS files are located in the corresponding
directory below:

[DVD]/<PRODUCT TYPE>/dev_kits/sun/

All of the files in this directory are encrypted and must be unencrypted before use.

There are two (2) utility programs on the DVD that will unencrypt the files.

a. GDEV – See Appendix B for description and use.
b. dev_s64.exe is located in the dev_kits directory

Ex: DEV_S64.EXE CUST_ID OUTPUT_PATH PRODUCT_FILE

i. OUTPUT_PATH is the directory created in step 1.

ii. PRODUCT_FILE is a file from the list in step 6. This should not include any directory paths.

The installation program must be executed from within the DVD directory. This step needs to be
performed once for each file listed in the file description in step 6 on the next page.

Note: A customer ID (CUST_ID) should be obtained from Address Matching System Technical Support. The

customer ID must be entered in uppercase letters.

The customer ID provided by Address Matching System Technical Support will change each month. We do
not recommend hard-coding the customer ID into an install program. For program installation, you may
obtain a unique customer ID from Address Matching System Technical Support. This unique customer ID
will not change for the duration of the AMS API license unless otherwise specified.

3. Run SAMPLESH to test the Address Matching System.

a. CHMOD on SAMPLESH to rwx.

b. CHMOD on Z4CXLOG.DAT to rw.

c. Select the option to manually enter the paths

4. Use SAMPLE.C as an example to create your own API application.

5. Refer to Section 3, API Functions, to test other API function calls.

6. The following is an explanation of the API files for SUN UNIX:

a. LIBZ4SUN64.SO ZIP4 shared library

b. ZIP4.H Interface header file

c. Z4CONFIG.DAT File location file

d. Z4CXLOG.DAT Date time file

e. SAMPLE.C Sample C source file

f. SAMPLE.H Sample header file

g. SAMPLESH Sample executable linked with LIBZ4SUN.SO

Section 1: Introduction and Overview

Address Matching System API User Guide • August 2011 9

h. LIBKEYMGR.SO.3 Key manager shared library

Special Notes for SUN UNIX (64 Bit)

The Address Matching System DVD uses the ISO9660 file-system format, which stores file names in uppercase
letters with a version control number appended to the end. The API requires that the DVD file names appear in
lowercase letters without the version number. Some versions of UNIX will automatically accommodate file name
conversion during the mount process, but some require the user to specify the conversion explicitly with the options
of the “mount” command. Please see the man pages on mount for more information on these options.

The Address Matching System S64 API Developer’s Kit contains a shared library. In compliance with CASS rules,
the API code is set to expire at the end of the current CASS cycle, each August. If this date is reached without
replacing the shared library, a user’s application will stop functioning.

Section 1: Introduction and Overview

Address Matching System API User Guide • August 2011 10

Installation Procedures for AIX UNIX

1 Create a directory on your hard drive in which to store the API files.

 Ex. mkdir /usr/src/ams

2 Copy the Address Matching System files to your hard drive.

The AMS product is distributed on DVD. The AMS files are located in the corresponding
directory below:

[DVD]/<PRODUCT TYPE>/dev_kits/aix/

All of the files in this directory are encrypted and must be unencrypted before use.

There are two (2) utility programs on the DVD that will unencrypt the files.

a. GDEV – See Appendix B for description and use.
b. dev_aix.exe located in the dev_kits directory

Ex. DEV_AIX.EXE CUST_ID OUTPUT_PATH PRODUCT_FILE

i. OUTPUT_PATH is the directory created in step 1.
ii. PRODUCT_FILE is a file from the list in step 6. This should not include any directory paths

The installation program must be executed from within the DVD directory. This step needs to be performed once for
each file listed in the file description in step 6 on the next page.

Note: A customer ID (CUST_ID) should be obtained from Address Matching System Technical Support. The
 customer ID must be entered in uppercase letters.

The customer ID provided by Address Matching System Technical Support will change each month. We do
not recommend hard-coding the customer ID into an install program. For program installation, you may
obtain a unique customer ID from Address Matching System Technical Support. This unique customer ID
will not change for the duration of the AMS API license unless otherwise specified.

.
3 Run SAMPLEST to test Address Matching System.

a. CHMOD on SAMPLEST to rwx.

b. CHMOD on Z4CXLOG.DAT to rw.

c. Select the option to manually enter the paths.

4 Use SAMPLE.C as an example to create your own API application.

5 Refer to Section 3, API Functions, to test other API function commands.

6 The following is an explanation of the API files for AIX UNIX:

a. ZIP4_AIX.A Static-link library

b. ZIP4.H Interface header file

c. Z4CONFIG.DAT File location file [Deprecated]

d. Z4CXLOG.DAT Date time file

e. SAMPLE.C Sample C source file

f. SAMPLE.H Sample header file

Section 1: Introduction and Overview

Address Matching System API User Guide • August 2011 11

g. SAMPLEST Sample executable built with ZIP4_AIX.A

Special Notes for AIX UNIX

The Address Matching System DVD uses the ISO9660 file-system format, which stores file names in uppercase
letters with a version control number appended to the end. However, the API requires that the DVD file names
appear in lowercase letters without the version number. Some versions of UNIX will automatically accommodate
file-name conversion during the mount process, but some require the user to specify the conversion explicitly with
the options of the “mount” command. Please see the man pages on mount for more information on these options.

Section 1: Introduction and Overview

Address Matching System API User Guide • August 2011 12

Installation Procedures for LINUX (32 Bit)
1. Create a directory on your hard drive in which to store the API files.

Ex. mkdir /usr/src/ams

2. Copy the Address Matching System files to your hard drive.

The AMS product is distributed on DVD. The AMS files are located in the corresponding
directory below:

[DVD]/<PRODUCT TYPE>/dev_kits/lnx/

All of the files in this directory are encrypted and must be unencrypted before use.

There are two (2) utility programs on the DVD that will unencrypt the files.

a. GDEV – See Appendix B for description and use
b. dev_lnx.exe located in the dev_kits directory

Ex. DEV_LNX.EXE CUST_ID OUTPUT_PATH PRODUCT_FILE

i. OUTPUT_PATH is the directory created in step 1.

ii. PRODUCT_FILE is a file from the list in step 6. This should not include any directory paths.

The installation program must be executed from within the DVD directory. This step needs to be performed
once for each file listed in the file description in step 6 on the next page. Following initial installation, the only
files that need to be installed with subsequent DVD updates are the header files and libraries. A batch file is
recommended to simplify this install process.

Note: A customer ID (CUST_ID) should be obtained from Address Matching System Technical Support. The
 customer ID must be entered in uppercase letters.

The customer ID provided by Address Matching System Technical Support will change each month. We do
not recommend hard-coding the customer ID into an install program. For program installation, you may
obtain a unique customer ID from Address Matching System Technical Support. This unique customer ID
will not change for the duration of the AMS API license unless otherwise specified.

3. Run SAMPLESH and SAMPLEST to test Address Matching System.

a. CHMOD on SAMPLESH and SAMPLEST to rwx.

b. CHMOD on Z4CXLOG.DAT to rw.

c. Select the option to manually enter the paths

4. Use SAMPLE.C as an example to create your own API application.

5. Refer to Section 3, API Functions, to test other API function commands.

6. The following is an explanation of the API files for LNX:

a. LIBZ4LNX.SO ZIP4 shared library

b. ZIP4_LNX.A Static link library; not recommended

c. ZIP4.H Interface header file

d. Z4CONFIG.DAT File location file

e. Z4CXLOG.DAT Date time file

Section 1: Introduction and Overview

Address Matching System API User Guide • August 2011 13

f. SAMPLE.C Sample C source file

g. SAMPLE.H Sample header file

h. SAMPLESH Sample executable linked with LIBZ4LNX.SO

i. SAMPLEST Sample executable built with ZIP4_LNX.A

j. LIBKEYMGR.SO.3 Key manager shared library

Special Notes for LINUX (32 Bit)

The Address Matching System DVD uses the ISO9660 file-system format, which stores file names in uppercase
letters with a version control number appended to the end. However, the API requires that the DVD file names
appear in lowercase letters without the version number. Some versions of UNIX will automatically accommodate
file-name conversion during the mount process, but some require the user to specify the conversion explicitly with
the options of the “mount” command. Please see the man pages on mount for more information on these options.

The Address Matching System LINUX API Developer’s Kit contains both a static-link and a shared library. The
static-link library is provided for compatibility with older programs written before the shared library was available.
The USPS does not recommend use of the static-link library because logic changes are often made to the API, and
the user would have to re-link the executable files with the AMS staticlink library every time there is an update.
Also, in compliance with CASS rules, the API code is set to expire at the end of the current CASS cycle, each
August. If this date is reached without re-linking with a newer API, a user’s application will stop functioning.

To avoid these problems, the USPS recommends using the AMS shared library so that user applications can gain
immediate access to any logic changes simply by installing the new shared library. User applications do not need to
be re-linked when a new shared library is provided on DVD updates.

Special Note: Based on licensees’ feedback (February 2011), USPS® has upgraded to Linux 2.6 (compiler
version 4.3.4). We will continue to support Linux 2.0 (compiler version 2.91.66). Linux 2.6 has been placed in
the LNX dev_kits folders, while the older version Linux 2.0 is available in L32 folder.

Section 1: Introduction and Overview

Address Matching System API User Guide • August 2011 14

Installation Procedures for LINUX (64 Bit)
1. Create a directory on your hard drive in which to store the API files.

Ex. mkdir /usr/src/ams

2. Copy the Address Matching System files to your hard drive.

The AMS product is distributed on DVD. The AMS files are located in the corresponding
directory below:

[DVD]/<PRODUCT TYPE>/dev_kits/l64/

All of the files in this directory are encrypted and must be unencrypted before use.

There are two (2) utility programs on the DVD that will unencrypt the files.

a. GDEV – See Appendix B for description and use
b. dev_l64.exe located in the dev_kits directory

Ex. DEV_L64.EXE CUST_ID OUTPUT_PATH PRODUCT_FILE

i. OUTPUT_PATH is the directory created in step 1.

ii. PRODUCT_FILE is a file from the list in step 6. This should not include any directory paths.

The installation program must be executed from within the DVD directory. This step needs to be performed
once for each file listed in the file description in step 6 on the next page. Following initial installation, the only
files that need to be installed with subsequent DVD updates are the header files and libraries. A batch file is
recommended to simplify this install process.

Note: A customer ID (CUST_ID) should be obtained from Address Matching System Technical Support. The
 customer ID must be entered in uppercase letters.

The customer ID provided by Address Matching System Technical Support will change each month. We do
not recommend hard-coding the customer ID into an install program. For program installation, you may
obtain a unique customer ID from Address Matching System Technical Support. This unique customer ID
will not change for the duration of the AMS API license unless otherwise specified.

3. Run SAMPLESH and SAMPLEST to test Address Matching System.

a. CHMOD on SAMPLESH and SAMPLEST to rwx.

b. CHMOD on Z4CXLOG.DAT to rw.

c. Select the option to manually enter the paths

4. Use SAMPLE.C as an example to create your own API application.

5. Refer to Section 3, API Functions, to test other API function commands.

6. The following is an explanation of the API files for LNX:

a. LIBZ4LNX64.SO ZIP4 shared library

b. ZIP4_LNX64.A Static link library; not recommended

c. ZIP4.H Interface header file

d. Z4CONFIG.DAT File location file

e. Z4CXLOG.DAT Date time file

Section 1: Introduction and Overview

Address Matching System API User Guide • August 2011 15

f. SAMPLE.C Sample C source file

g. SAMPLE.H Sample header file

h. SAMPLESH Sample executable linked with LIBZ4LNX.SO

i. SAMPLEST Sample executable built with ZIP4_LNX.A

j. LIBKEYMGR.SO.3 Key manager shared library

Special Notes for LINUX (64 Bit)

The Address Matching System DVD uses the ISO9660 file-system format, which stores file names in uppercase
letters with a version control number appended to the end. However, the API requires that the DVD file names
appear in lowercase letters without the version number. Some versions of UNIX will automatically accommodate
file-name conversion during the mount process, but some require the user to specify the conversion explicitly with
the options of the “mount” command. Please see the man pages on mount for more information on these options.

The Address Matching System LINUX 64 API Developer’s Kit contains both a static-link and a shared library. The
static-link library is provided for compatibility with older programs written before the shared library was available.
The USPS does not recommend use of the static-link library because logic changes are often made to the API, and
the user would have to re-link the executable files with the AMS static-link library every time there is an update.
Also, in compliance with CASS rules, the API code is set to expire at the end of the current CASS cycle, each
August. If this date is reached without re-linking with a newer API, a user’s application will stop functioning.

To avoid these problems, the USPS recommends using the AMS shared library so that user applications can gain
immediate access to any logic changes simply by installing the new shared library. User applications do not need to
be re-linked when a new shared library is provided on DVD updates.

Section 2: Coding Requirements

Address Matching System API User Guide • August 2011 16

Section 2: Coding Requirements

Thread Safety
The Address Matching System library is not thread safe and it’s function calls must be protected if it is to be used in
a multi-threaded application.

Your software will need to implement controls to ensure that the input is queued and submitted to the AMS library
one at a time.

Process Safety
The Address Matching System library can be used in multiple processes, but each process must have a z4cxlog.dat
file that is dedicated for it’s sole use.

The AMS library performs write operations to the z4cxlog.dat file and it is possible that the file can become corrupt
if it is used by multiple processes at the same time.

Stop Processing / False Positive Events
Your software is required to handle false positive events which cause the AMS library to shut down (stop
processing).

This requirement is not unique to the AMS library, it is a requirement that has been placed upon all address
matching software that uses the USPS® DPV® and/or LACSLink® data products.

False positive detection is a security measure embedded in the DPV and LACSLink sub-systems of the AMS library.
This security measure is designed to prevent the artificial creation of an address list by detecting when a submitted
address appears to have been constructed artificially and not obtained legitimately. This should be a very rare
occurrence, but when this security measure is tripped the AMS library will shut down and it will no longer process
addresses until the reporting requirement has been completed

The following steps provide an overview of how to comply with this requirement:

1. Determine when a false positive event occurs.
 Immediately after all z4adrinq() function calls your software will need to check the DPV and LACSLink
 sub-systems to see if a false positive event occurred.
 DPV sub-system : call z4DpvGetCode(HSF_DPV) and check for the value ‘Y’
 LACSLink sub-system : check the llk_ind variable of the ZIP4_PARM structure and check for the value ‘F’

2. If a false positive event was not detected, skip the following steps.

3. Gather the required information.
 This includes the submitted address that tripped the false positive and information on the customer that submitted
 the address.

 This information must be written to a file in a specific format. For details see pages 12 and 13 in the document
 http://ribbs.usps.gov/dpv/documents/tech_guides/DPV_LPR.PDF

4. Depending on which sub-system reported the event, call the appropriate function to get the shut-down key.
 DPV sub-system : z4DpvGetKey()
 LACSLinksub-system : z4LLkGetKey()

5. Send an email to the DSF2STOP@USPS.COM email address informing them that your software has hit a
 false positive address. Include the information from step 3 (as a file attachment) and step 4 above in this email.

http://ribbs.usps.gov/dpv/documents/tech_guides/DPV_LPR.PDF
mailto:DSF2STOP@USPS.COM

Section 2: Coding Requirements

Address Matching System API User Guide • August 2011 17

 This email will be evaluated by the USPS licensing dept. and they will provide further guidance after reviewing
 the information.

6. You will be provided a re-activation key after step 5 has been completed and approved.

7. You will need to pass the re-activation key(s) in as a parameter to the z4DpvSetKey() or the
 z4LLkSetKey() function depending upon which sub-system reported the event.

8. Call the z4opencfg() function to open the AMS library.

In addition, it is also required that the following text be included in all end-user documentation to describe this
error.

AMS, DPV, LACSLink and SuiteLink API processing was terminated due to the detection of what is determined to
be an artificially created address. No address beyond this point has been validated and/or processed. In accordance
with the Agreement between the Licensor and the Licensee, AMS, DPV, LACSLink and SuiteLink API shall be
used to validate legitimately obtained addresses only, and shall not be used for the purpose of artificially creating
address lists. The written agreement between the Licensee and the End User shall also include this same restriction
against using AMS, DPV, LACSLink and SuiteLink API to artificially create address lists. Continuing use of AMS,
DPV, LACSLink and SuiteLink API requires compliance with all terms of the Agreement. If you believe this
address was identified in error, please contact your Vendor.

Function Call Order
The AMS library provides your software with the ability to process addresses in compliance with CASSTM
requirements. In order to accurately comply with these requirements it is recommended that you use the following
steps when submitting addresses to the AMS library.

1. Initially submit the address to the z4adrinq() function call.
2. If a multiple response is returned, then call the z4DpvResolveMultiResp() function to attempt to resolve
 it to a single match.
3. If a default response is returned, then call the z4SLNKQuery() function to attempt to resolve it to an exact
 match.
4. Finally, if you wish to obtain an abbreviated version of the street name, then call the z4ABSQuery() function.

Note: Step 4 is required when your software is processing a CASS test, but it is optional at all other times.

Example code snippet for the steps above:

z4adrinq(pZip4);

if(pZip4->retcc == Z4_MULTIPLE)
 z4DpvResolveMultiResp(pZip4);

if(pZip4->retcc == Z4_DEFAULT)
 z4SLNKQuery(pZip4);

if(pZip4->retcc > Z4_MULTIPLE)
 z4ABSQuery(pZip4, pAbbr);

Section 3: API Functions

Address Matching System API User Guide • August 2011 18

Section 3: API Functions
The following functions are used to perform inquiries on addresses and 9-digit ZIP Codes:

 z4opencfg() Open the Address Matching System with Special Parameters

 z4adrinq() Address Inquiry

 z4adrkey() Address Sort Key

 z4xrfinq() 9-digit Inquiry

 z4xrfinq11() 11-digit Inquiry

 z4adrstd() Address Standardization

 z4close() Close the Address Matching System

 z4ctyget() Read City/State File by Key

 z4ctynxt() Read City/State File Next

 z4adrget() Read ZIP+4 File by Key

 z4adrnxt() Read ZIP+4 File Next

 z4adrprv() Read ZIP+4 File Previous

 z4getzip() Get a ZIP Code range for a City/St

 z4abort() Terminate Active Address Inquiry

 z4date() Get Date of ZIP+4 Database

 z4GetDataExpireDays() Get AMS Data Expiration

 z4GetCodeExpireDays() Get AMS Library Expiration

 z4ver() Get the Version of the API code

 z4scroll() Multiple Response Stack

 z4geterror() Get Last Error

 z4getenv() Get Environment

 z4LLkGetKey() Retrieving the LACSLink Security Key

 z4LLkIsDisabled() Checking for LACSLink Functionality

 z4LLkSetKey() Disabling the LACSLink Security Key

 z4SLNKGetDate() Provides the date associated with a table

 z4SLNKGetError() Provides the error integer status of SuiteLink

 z4SLNKGetErrorMsg() Provides the error string status of SuiteLink

 z4SLNKQuery() Performs a SuiteLink lookup

 z4ABSQuery() Performs an abbreviated street address lookup

Section 3: API Functions

Address Matching System API User Guide • August 2011 19

Open the Address Matching System with Special Parameters
The z4opencfg() function opens the Address Matching System for application use. This function must be called
before attempting to use any of the inquiry functions. During system opening, the Address Matching System
allocates memory buffers and file handles for disk I/O. The function returns a code summarizing the results of the
open operation.

Note: The DPV® and LACSLink® components are no longer optional and must always be enabled. While the

Z4OPEN_PARM still contains the llkflag and dpvflag variables, they no longer provide any
functionality and are ignored by the AMS library. eLOT ® is available through the USPS AMS API,
 but it is turned off by default. To enable eLOT® processing, you must first call z4opencfg() and set the
elotflag variable to ‘Y’. You must also use the CONFIG_PARM to specify the paths to the AMS
database.

Syntax

#include “zip4.h”
int z4opencfg(Z4OPEN_PARM* openparm);

Input

openparm A pointer to a Z4OPEN_PARM structure where the output will be stored.

If a field in the Z4OPEN_PARM is not used, then it must be initialized to NULL/zero (see example code).

typedef struct
{
 char rsvd1[50];
 short status;
 char* fname;

 CONFIG_PARM config;

 char ewsflag;
 char elotflag;
 char llkflag;
 char dpvflag;
 char systemflag;
 char rtsw[16];
 char dpvtypeflag;
 char stelnkflag;
 char abrstflag;
 char rsvd2[492];

}Z4OPEN_PARM;

Section 3: API Functions

Address Matching System API User Guide • August 2011 20

Field Definitions:

rsvd1 Reserved for future use.
status See “Output” section.
fname Pointer to a string that contains the full path and filename for a custom config file. [Deprecated]
config Embedded structure for setting the path names to the AMS database. (Not used if fname is set)
ewsflag Set to ‘Y’ to activate EWS processing
elotflag Set to ‘Y’ to activate eLOT processing.
llkflag Usage has been discontinued
dpvflag Usage has been discontinued
systemflag Set to ‘Y’ to de-activate the auto-generation of the security file.
rsvd2 Reserved for future use.
rtsw Reserved for future use.
dpvtypeflag Reserved for future use
stelnkflag Set to ‘Y’ to activate SuiteLink processing
abrstflag Set to ‘Y’ to activate abbreviated street name processing

Output

Z4OPEN_PARM.status will be set to 1, 2 or 9 to indicate which value was used for the configuration file.

Name Value Meaning
Z4_FNAME 1 Used the value pointed to by the fname character pointer
Z4_CONFIG 2 Used the values pointed to by the CONFIG_PARM structure
Z4_SEARCH 9 Searched for a file named z4config.dat

Return

-1 The USPS Address Matching System is already open

0 The USPS Address Matching System opened successfully

1 The USPS Address Matching System is not in sync

2 The USPS Address Matching System has expired

4 The USPS Address Matching System failed to open DPV

5 The USPS Address Matching System failed to open DPV

7 The USPS Address Matching System failed to open LACSLink

13 The USPS Address Matching System failed to open SuiteLink

17 The USPS Address Matching System failed to open Abbreviated street name

Note: See the DPV User Guide for specific information on DPV errors.

Section 3: API Functions

Address Matching System API User Guide • August 2011 21

Example

#include <stdio.h>
#include “zip4.h”

void main(void)
{

Z4OPEN_PARM openparm;
int rtn=0;

memset(&openparm, 0, sizeof(openparm));

/*Open with the paths embedded in the CONFIG_PARM structure*/
openparm.config.address1 = “c:\\amsdata\\”;
openparm.config.addrindex = “c:\\amsdata\\”;
openparm.config.cdrom = “d:\\”;
openparm.config.citystate = “c:\\amsdata\\”;
openparm.config.crossref = “c:\\amsdata\\”;
openparm.config.system = “c:\\amsdata\\”;
openparm.config.elot = “c:\\elotdata\\”;
openparm.config.elotindex = “c:\\elotdta\\”;
openparm.config.llkpath = “c:\\llkdata\\”;
openparm.config.dpvpath = “c:\\dpvdata\\”;
openparm.config.fnsnpath = “c:\\amsdata\\”;
openparm.config.stelnkpath = “c:\\slkdata\\”;
openparm.config.abrstpath = “c:\\abrstdata\\”;

/*Turn eLOT processing on*/
openparm.elotflag = ‘Y’;

rtn = z4opencfg(&openparm);

if(rtn==0)
 printf(“\nSuccess opening the USPS Address Matching System.”);
else
 printf(“\nError opening the USPS Address Matching System.”);

/*close the USPS Address Matching System*/
z4close();

}

Section 3: API Functions

Address Matching System API User Guide • August 2011 22

Address Inquiry
The z4adrinq() function commands the Address Matching System to perform an address inquiry using firm
name (optional), address, and city/state/ZIP information. Before performing this function, the input address
information must be copied into the corresponding input fields outlined below. Note that the City, State, and ZIP
fields may be placed either within the parm.ictyi field or copied to the parm.ictyi, parm.stai, and
parm.izipc fields, respectively. Following the address inquiry, the parm.retcc field contains a response code
summarizing the inquiry results. If an address response was found, standardized address information will be located
in the output fields described below.

Syntax

#include “zip4.h”
int z4adrinq(ZIP4_PARM* parm);

Input

parm A pointer to a ZIP4_PARM structure that provides the input and where the output will be stored.

The following fields must be initialized before calling the z4adrinq() function. If a field is not used, it must be
initialized to zero.

parm.iadl1 Street Address
parm.iadl2 Firm Name
parm.iad13 Secondary Address
parm.iprurb Puerto Rican Urbanization Name
parm.ictyi City or City/State/ZIP
parm.istai State or empty
parm.izipc ZIP or empty
parm.iddpv11 Future Use

Output

parm.retcc Response Code

Z4_INVADDR 10 — Invalid input address (i.e., contained a dual address)

Z4_INVZIP 11 — Invalid input 5-digit ZIP Code

Z4_INVSTATE 12 — Invalid input state abbreviation code

Z4_INVCITY 13 — Invalid input city name

Z4_NOTFND 21 — No match found using input address

Z4_MULTIPLE 22 — Multiple responses were found and more specific information is
 required to select a single or default response
Z4_SINGLE 31 — A single address was found

Z4_DEFAULT 32 — An address was found, but a more specific address could be found with
 more information

Section 3: API Functions

Address Matching System API User Guide • August 2011 23

parm.foot Footnotes
parm.foot.a = “A” ZIP Code Corrected
parm.foot.b = “B” City/State Corrected
parm.foot.c = “C” Invalid City/State/ZIP
parm.foot.d = “D” No ZIP+4 Code Assigned
parm.foot.e = “E” ZIP Code Assigned with a Multiple Response
parm.foot.f = “F” Address Not Found
parm.foot.g = “G” All or Part of the Firm Line Used For Address Line
parm.foot.h = “H” Missing Secondary Number
parm.foot.i = “I” Insufficient/Incorrect Data
parm.foot.j = “J” PO Box Dual Address
parm.foot.k = “K” Non-PO Box Dual Address
parm.foot.l = “L” Address Component Changed
parm.foot.m = “M” Street Name Changed
parm foot.n = “N” Address Standardized
parm.foot.o = “O” Multiple response can be broken using the lowest +4
parm.foot.p = “P” Better Address Exists
parm.foot.q = “Q” Unique ZIP Code Match
parm.foot.r = “R” No Match due to EWS
parm.foot.s = “S” Incorrect Secondary Number
parm.foot.t = “T” Multiple response due to Magnet Street Syndrome
parm.foot.u = “U” Unofficial Post Office Name
parm.foot.v = “V” Unverifiable City/State
parm.foot.w = “W” Small Town Default
parm.foot.x = “X” Unique ZIP Code Default
parm.foot.y = “Y” Military Match
parm.foot.z = “Z” ZIP Move Match

parm.stelnkfoot = “00” SuiteLink no match
 = “A “ SuiteLink match
 = “” SuiteLink did not attempt a lookup

Section 3: API Functions

Address Matching System API User Guide • August 2011 24

Return Address Description

parm.dadl1 Standardized Output Address

parm.dadl2 Standardized Output Firm Name

parm.dad13 Standardized Secondary Address

parm.dprurb Standardized Puerto Rican Urbanization Name

parm.dctya Standardized Output City

parm.dstaa Standardized Output State

parm.dlast Standardized Output City, State, and ZIP

parm.dctys Main Post Office Output City

parm.dstas Main Post Office Output State

parm.abcty Abbreviated Output City

parm.zipc 5-digit ZIP Code

parm.addon 4-digit Add-on Code

parm.cris 4-digit Carrier Route Code

parm.county 3-digit County Code

parm.dpbc 2-digit Delivery Point Barcode and 1-digit Check Digit

parm.mpnum Matched Primary Number

parm.msnum Matched Secondary Number

parm.auto_zone_ind Carrier Route Rate Sort Indicator (Y or N)

parm.elot_num Enhanced Line of Travel (eLOT) number

parm.elot_code eLOT Ascending/Descending Flag (A/D)

parm.llk_rc LACSLink Return Code

parm.llk_ind LACSLink Indicator

parm.respn Number of Response Records Returned

parm.retcc Lookup Status

parm.adrkey Address Database Key (Binary field)

parm.misc unused input data

Section 3: API Functions

Address Matching System API User Guide • August 2011 25

Parsed Input Description

ppnum Primary Number

psnum Secondary Number

psnum2 Second or Right Secondary Number

prote Rural Route Number

punit Secondary Number Unit

punit2 Secondary or Right Secondary Number Unit

ppre1 First or Left Pre-direction

ppre2 Second or Right Pre-direction

psuf1 First or Left Suffix

psuf2 Second or Right Suffix

ppst1 First or Left Post-direction

ppst2 Second or Right Post-direction

ppnam Primary Name

mpnum Matched Primary Number

msnum Matched Secondary Number

pmb PMB Unit Designator

pmbnum PMB Number

Section 3: API Functions

Address Matching System API User Guide • August 2011 26

Return

 0 - The USPS Address Matching System resident
 1 - The USPS Address Matching System issued a system error
 2 - The USPS Address Matching System not ready
 3 – DVD has expired

Additional Information About Z4ADRINQ()

If parm.retcc is Z4_INVADDR, Z4_INVZIP, Z4_INVSTATE, Z4_INVCITY, Z4_NOTFND, or Z4_MULTIPLE,
then the return address fields will contain the input address. If the input address is unambiguously a rural route,
highway contract, PO Box, or general delivery address, then the return fields will contain the normalized version of
the input address.

If parm.retcc is Z4_MULTIPLE, then parm.foot, parm.respn, and parm.stack are also returned by the system. The
parm.zipc and/or parm.cris fields may contain data if all records in the stack have the same ZIP Code and/or carrier
route ID.

If parm.retcc is Z4_SINGLE or Z4_DEFAULT, then all fields in the returned data section are returned by the
Address Matching System. The first record in the parm.stack structure will contain the ZIP+4 record to which the
system matched. This record may be used to access the individual fields from the matched record, such as primary
name, suffix, post-directional, etc.

Section 3: API Functions

Address Matching System API User Guide • August 2011 27

Example

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include “zip4.h”

ZIP4_PARM parm;

int main(int argc, char** argv)
{

Z4OPEN_PARM openparm;

memset (&openparm, 0, sizeof(openparm));

/* ... Populate openparm ... */

/* open the USPS Address Matching System */
if (z4opencfg(&openparm) != 0)
{

printf(“The USPS Address Matching System failed to open”);

/* Always call z4close() even on open failure */

z4close();

exit(5);

}

/* load input address parameters */
memset(&parm, 0, sizeof(parm));
strcpy(parm.iadl2, “ACME TOOL AND DIE”);/* Firm line */
strcpy(parm.iadl3, “STE 200”);/* Secondary or extra line*/
strcpy(parm.iadl1, “323 S 152ND ST”);/* Primary address line */
strcpy(parm.iprurb, “”);/* Puerto Rico specific */
strcpy(parm.ictyi, “OMAHA, NE 68154);/* City, State, ZIP */

/* request address inquiry */
z4adrinq(&parm);

/* if a response found (either single or default) */
if(parm.retcc==Z4_SINGLE || parm.retcc==Z4_DEFAULT)

 {
printf(“Found response.\n”);
printf(“Name: %s\n”, parm.dadl2);
printf(“S Addr: %s\n”, parm.dad13);
printf(“Addr: %s\n”, parm.dadl1);
printf(“PRUrb: %s\n”, parm.dprurb);
printf(“City: %s\n”, parm.dctya);
printf(“ST: %s\n”, parm.dstaa);
printf(“ZIP: %s\n”, parm.zipc);
printf(“Addon: %s\n”, parm.addon);
printf(“DPBC: %s\n”, parm.dpbc);
printf(“Pre Dir: %s\n”, parm.stack[0].pre_dir);
printf(“Str Name: %s\n”, parm.stack[0].str_name);
printf(“Suffix: %s\n”, parm.stack[0].suffix);
printf(“Post Dir: %s\n”, parm.stack[0].post_dir);
printf(“Lacs Ind: %c\n”, parm.stack[0].lacs_status);

 }

 /* close The USPS Address Matching System */
 z4close();

 exit(0)

}

Section 3: API Functions

Address Matching System API User Guide • August 2011 28

Address Sort Key
The z4adrkey() function creates a sort key for an address. This function can be used in batch processes to sort an
input file in the order that addresses are contained on the Address Matching System data files. However, the
function does not sort your file; it produces a key field to assist your software in sortation. Sorting an input file
usually produces a dramatic increase in processing throughput.

Syntax

#include “zip4.h”
int z4adrkey(ZIP4_PARM* parm);

Input

parm A pointer to a ZIP4_PARM structure that provides the input and where the output will be stored.

The following fields must be initialized before calling the z4adrkey() function.

parm.iadl1 Street Address
parm.iadl2 Firm Name
parm.iprurb Puerto Rican Urbanization Name
parm.ictyi City or City/ State/ ZIP
parm.istai State or empty
parm.izipc ZIP or empty

Output

parm.adrkey Address Sort Key

Note: The contents and length of the address sort key are subject to change at any time. The key contains
 binary data and should be used in its entirety for the sort process.

Return

 0 - The USPS Address Matching System resident
 1 - The USPS Address Matching System issued a system error
 2 - The USPS Address Matching System not ready

Section 3: API Functions

Address Matching System API User Guide • August 2011 29

Example

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include “zip4.h”

ZIP4_PARM parm;

int main(int argc, char** argv)
{

int i;

Z4OPEN_PARM openparm;

memset (&openparm, 0, sizeof(openparm));

/* ... Populate openparm ... */

/* open the USPS Address Matching System */
if (z4opencfg(&openparm) != 0)
{

printf(“The USPS Address Matching System failed to open”);

/* Always call z4close() even on open failure */
z4close();

exit(5);

}

/* load input address parameters */
memset(&parm, 0, sizeof(parm));

strcpy(parm.iadl2, “ACME TOOL AND DIE”);/* Firm line */
strcpy(parm.iadl3, “STE 200”);/* Secondary/extra line */
strcpy(parm.iadl1, “323 S 152ND ST”);/* Primary address line */
strcpy(parm.iprurb, “”);/* Puerto Rico specific */
strcpy(parm.ictyi, “OMAHA, NE 68154);/* City, State, ZIP */

/* request address sort key */
z4adrkey(&parm);

/* print the address sort key in hex */
for(i=0; i<sizeof(parm.adrkey); i++)

printf(“%02X“, parm.adrkey[i]);

printf(“\n”);

/* close The USPS Address Matching System */
z4close();
exit(0);

}

Section 3: API Functions

Address Matching System API User Guide • August 2011 30

9-digit Inquiry
The z4xrfinq() (9-digit Inquiry) function commands the Address Matching System to perform an address
inquiry using an input 9-digit ZIP Code. Before using this function, the input 9-digit ZIP Code must be copied into
the parm.iadl1 field outlined below. Following the 9-digit inquiry, the parm.retcc field displays a return code
summarizing the result of the inquiry. If an address response was found, standardized address information can be
found in the output fields described in the Address Inquiry function description (page 22).

Note: This function only returns matches to address records, not to specific addresses. Address records generally

contain a range of possible addresses.

To find a match to a specific address using only the ZIP Code, you will need to use the 11-Digit Inquiry
function (page 32).

Syntax

#include “zip4.h”
int z4xrfinq(ZIP4_PARM* parm);

Input

parm A pointer to a ZIP4_PARM structure to provide the input and where the output will be stored.

The following field must be initialized before calling the z4xrfinq() function:

parm.iadl1 9-digit ZIP Code.

Note: Return Code 22 denotes multiple responses. The address fields contain the first of a stack of ten
possible responses (or matches).

Output

parm.retcc Response code

Z4_SINGLE A single address was found

Z4_DEFAULT A default address was found, but more specific addresses exist

Z4_NOTFND No match found; considered a not found address

Z4_MULTIPLE Multiple responses were found

Refer to the Address Inquiry function description for other output fields (page 22).

Return

0 - The USPS Address Matching System resident
1 - The USPS Address Matching System issued a system error
2 - The USPS Address Matching System not ready
3 - The USPS Address Matching System has expired

Section 3: API Functions

Address Matching System API User Guide • August 2011 31

Example

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include “zip4.h”

ZIP4_PARM parm;
int main(int argc, char** argv)
{

Z4OPEN_PARM openparm;

memset (&openparm, 0, sizeof(openparm));

/* ... Populate openparm ... */

/* open the USPS Address Matching System */
if (z4opencfg(&openparm) != 0)
{

printf(“The USPS Address Matching System failed to open”);

/* Always call z4close() even on open failure */
z4close();

exit(5);

/* load input 9-digit ZIP parameter */
memset(&parm, 0, sizeof(parm));
strcpy(parm.iadl1, ”681642815");

/* request address inquiry */
z4xrfinq(&parm);

/* if a response found (either single or default) */
if(parm.retcc == Z4_SINGLE || parm.retcc == Z4_DEFAULT)
{

printf(“Found response.\n”);
printf(“Name: %s\n”, parm.dadl2);
printf(“Addr: %s\n”, parm.dadl1);
printf(“PRUrb: %s\n”, parm.dprurb);
printf(“City: %s\n”, parm.dctya);
printf(“ST: %s\n”, parm.dstaa);
printf(“ZIP: %s\n”, parm.zipc);
printf(“Addon: %s\n”, parm.addon);
printf(“DPBC: %s\n”, parm.dpbc);

}

/* close The USPS Address Matching System */
z4close();

exit(0);

}

Section 3: API Functions

Address Matching System API User Guide • August 2011 32

11-digit Inquiry
The z4xrfinq11() (11-digit Inquiry) function commands the Address Matching System to perform an address
inquiry using an input 11-digit ZIP Code. Before using this function, the input 11-digit ZIP Code must be copied
into the parm.iadl1 field outlined below. Following the 11-digit inquiry, the parm.retcc field displays a return code
summarizing the result of the inquiry. If an address response was found, standardized address information can be
found in the output fields described in the Address Inquiry function description (page 22).

Syntax

#include “zip4.h”
int z4xrfinq11(ZIP4_PARM* parm);

Input

parm A pointer to a ZIP4_PARM structure to provide the input and where the ouput will be stored.

The following field must be initialized before calling the z4xrfinq11() function:

parm.iadl1 11-digit ZIP Code

Note Return Code 22 denotes multiple responses. The address fields contain the first of a stack of ten possible
 responses (or matches). It is recommended that the first address in the output fields not be used as a

mailing address because it is not an exact match.

Output
 parm.retcc Response code

 Z4_SINGLE A single address was found

 Z4_DEFAULT A default address was found, but more specific addresses exist

 Z4_NOTFND No match found; considered a not found address

 Z4_MULTIPLE Multiple responses were found

Refer to the Address Inquiry function description for other output fields (page 22).

Return

0 - The USPS Address Matching System resident
1 - The USPS Address Matching System issued a system error
2 - The USPS Address Matching System not ready
3 - The USPS Address Matching System has expired

Section 3: API Functions

Address Matching System API User Guide • August 2011 33

Example

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include “zip4.h”

ZIP4_PARM parm;

int main(int argc, char** argv)
{

Z4OPEN_PARM openparm;

memset (&openparm, 0, sizeof(openparm));

/* ... Populate openparm ... */

/* open the USPS Address Matching System */
if (z4opencfg(&openparm) != 0)
{

printf(“The USPS Address Matching System failed to open”);

/* Always call z4close() even on open failure */
z4close();

exit(5);

 }

/* load input 11-digit ZIP parameter */
memset(&parm, 0, sizeof(parm));

strcpy(parm.iadl1, ”68164281527");

/* request address inquiry */
z4xrfinq11(&parm);

/* if a response found (either single or default) */
if(parm.retcc == Z4_SINGLE || parm.retcc == Z4_DEFAULT)
{

printf(“Found response.\n”);
printf(“Name: %s\n”, parm.dadl2);
printf(“Addr: %s\n”, parm.dadl1);
printf(“PRUrb: %s\n”, parm.dprurb);
printf(“City: %s\n”, parm.dctya);
printf(“ST: %s\n”, parm.dstaa);
printf(“ZIP: %s\n”, parm.zipc);
printf(“Addon: %s\n”, parm.addon);
printf(“DPBC: %s\n”, parm.dpbc);

}
/* close The USPS Address Matching System */
z4close();

exit(0);

}

Section 3: API Functions

Address Matching System API User Guide • August 2011 34

Address Standardization

The z4adrstd() (Address Standardization) function instructs the Address Matching System to standardize an
address. This function can be used when a Z4_MULTIPLE response is returned from the z4adrinq() function.
Use this function to standardize an address from the stack, but use it with caution. The index parameter is relative to
zero and must be in increments of ten for each z4scroll() function called. Therefore, the index will have a value
between zero and parm.respn minus one. Do not use the offset into the current stack of ten records.

When this function is called, the record corresponding to the index value is moved to the first position on the stack
(offset zero). If components from the ADDR_REC structure are needed for the current record that was processed
through z4adrstd(), they may be retrieved from the first stack record. Do not use the modulus 10 of the index (index
% 10) to retrieve the ADDR_REC components from the stack.

Note: This function should only be used when an operator is reviewing the multiple responses returned
 and selecting the record to be standardized. Please be advised that using this function in an
 unattended (batch) mode may result in inaccurate matches and possible failure to CASS certify.

Syntax

#include “zip4.h”
int z4adrstd(ZIP4_PARM* parm, int index)

Input

parm Pointer to the unmodified parameter list from the previous call to z4adrinq().
index Index of stack record to standardize address (refer to the description above).
 This must be less than parm.respn.

Output

parm.dadl1 Standardized Street Address
parm.dadl2 Standardized Firm Name
parm.dprurb Standardized Puerto Rican Urbanization Name
parm.dlast Standardized City/State/ZIP

Return

0 - Success
1 - Failure (i.e., invalid index parameter)
2 - The USPS Address Matching System not ready

Section 3: API Functions

Address Matching System API User Guide • August 2011 35

Example

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include “zip4.h”
ZIP4_PARM parm;

int main(int argc, char** argv)
{

Z4OPEN_PARM openparm;
memset (&openparm, 0, sizeof(openparm));

/* ... Populate openparm ... */

/* open the USPS Address Matching System */
if (z4opencfg(&openparm) != 0)
{

printf(“The USPS Address Matching System failed to open”);
/* Always call z4close() even on open failure */
z4close();
exit(5);

}
/* load input address parameters */
memset(&parm, 0, sizeof(parm));

strcpy(parm.iadl2, “ACME TOOL AND DIE”); /* Firm line */
strcpy(parm.iadl3, “”); /* Secondary or extra line */
strcpy(parm.iadl1, “1336 CHATMAN”); /* Primary address line */
strcpy(parm.iprurb, “”); /* Puerto Rico specific */
strcpy(parm.ictyi, “CORDOVA TN 38018”); /* City, State, ZIP */

/* request address inquiry */
z4adrinq(&parm);

/* standardize second address */
z4adrstd(&parm, 1);

/* display address */
printf(“Found response.\n”);
printf(“Name: %s\n”, parm.dadl2);
printf(“Addr: %s\n”, parm.dadl1);
printf(“PRUrb: %s\n”, parm.dprurb);
printf(“City: %s\n”, parm.dctya);
printf(“ST: %s\n”, parm.dstaa);
printf(“ZIP: %s\n”, parm.zipc);
printf(“Addon: %s\n”, parm.addon);
printf(“DPBC: %s\n”, parm.dpbc);

/* close The USPS Address Matching System */
z4close();

exit(0);

}

Section 3: API Functions

Address Matching System API User Guide • August 2011 36

Close the Address Matching System
The z4close() function closes the Address Matching System and is called when address inquiries have been
completed and the interface is no longer needed. During execution of this function, memory buffers and file handles
allocated during the z4opencfg() function are de-allocated and closed.

Note: The z4close() function call must be called after all calls to the z4opencfg() function call –

regardless if z4opencfg() succeeded or failed.

Syntax

#include “zip4.h”
int z4close(void);

Input

None

Output

None

Return

0 - The USPS Address Matching System closed
1 - The USPS Address Matching System not resident
2 - The USPS Address Matching System not ready

Example

#include <stdio.h>
#include “zip4.h”

void main(void)
{

/* close The USPS Address Matching System */
if(z4close() == 0)
 printf(“The USPS Address Matching System closed.\n”);
else
 printf(“Error closing the USPS Address Matching System.\n”);

}

Section 3: API Functions

Address Matching System API User Guide • August 2011 37

Read City/State File By Key

The z4ctyget() (Read City/State File By Key) function initiates a read of the City/State File. A specific ZIP
Code can be selected as a starting point in a read of the City/State File. To read subsequent records, the Read
City/State File Next function is used. For documentation on the City/State File, please refer to the Address
Information System Products Technical Guide, which is available from the USPS National Customer Support
Center’s Customer Support Department at 800-238-3150. It is also available on the Internet at
http://ribbs.usps.gov/files/addressing/pubs

Syntax

#include “zip4.h”
int z4ctyget(CITY_REC* cityrec, char* zipcode);

Input

cityrec Pointer to an empty CITY_REC structure where the output will be stored.

zipcode Pointer to a char array containing a 5 digit ZIP, or “00000”, as the starting point.

Output

The cityrec argument will be populated with the city information for the provided 5 digit ZIP code.

Return

0 - Success
1 - Failure
2 - The USPS Address Matching System not ready

Example

See example code for “Read City/State File Next” (Page 38).

Section 3: API Functions

Address Matching System API User Guide • August 2011 38

Read City/State File Next
The z4ctynxt() (Read City/State File Next) function reads subsequent records of the City/State File. It can only
be used after the z4ctyget() function has been called.

Note: Multiple calls to z4ctynxt() can not be mixed with calls to other Address Matching System functions.
 This function is designed to be called after a z4ctyget() or previous z4ctynxt() function call. The

results of the z4ctynxt() are undefined if it is called after any other AMS function call.

Syntax

#include “zip4.h”
int z4ctynxt(CITY_REC* cityrec);

Input

cityrec Pointer to an emtpy CITY_REC structure where the output will be stored.

Output

The cityrec argument will be populated with the next city record in the database.

Return

0 - Success
1 - Failure
2 - The USPS Address Matching System not ready

Section 3: API Functions

Address Matching System API User Guide • August 2011 39

Example
#include <stdio.h>
#include <stdlib.h>
#include “zip4.h”

CITY_REC city;

int main(int argc, char** argv)
{

int i;

Z4OPEN_PARM openparm;

memset (&openparm, 0, sizeof(openparm));

/* ... Populate openparm ... */

/* open the USPS Address Matching System */
if (z4opencfg(&openparm) != 0)
{

printf(“The USPS Address Matching System failed to open”);

/* Always call z4close() even on open failure */
z4close();

exit(5);

 }

/* read first city */
z4ctyget(&city, “00000”);

/* read 10 more cities */
for(i=0; i<10 && z4ctynext(&city) == 0; ++i)
{

printf(“%s %-28.28s %s %s\n”’ city.zip_code,
city.city_name,
city.state_abbrev,
city.finance);

}

/* close The USPS Address Matching System */
z4close();
exit(0);

}

Section 3: API Functions

Address Matching System API User Guide • August 2011 40

Read ZIP+4 File By Key

The z4adrget() (Read ZIP+4 File by Key) function is used to read the ZIP+4 File. For documentation on the
ZIP+4 File, please refer to the Address Information Products Technical Guide, which is available from the USPS
National Customer Support Center’s Customer Support Department at 800-238-3150. It is also available on the
Internet at http://ribbs.usps.gov/files/addressing/pubs A specific postal finance number can be selected as a starting
point in a read of the ZIP+4 File. To read subsequent records, the z4adrnxt() function is used. To read previous
records, the z4adrprv function is used.

Syntax

#include “zip4.h”
int z4adrget(ADDR_REC* addrrec, char* finance);

Input

addrrec A pointer to an empty ADDR_REC structure.
finance A pointer to a char array containing the starting finance number or “000000”

Output

The addrrec argument will be populated with the first address for the finance number provided.

Return

0 - Success
1 - Failure
2 - The USPS Address Matching System not ready

Example

See example code for “Read ZIP+4 File Next” (page 41)

http://ribbs.usps.gov/files/addressing/pubs

Section 3: API Functions

Address Matching System API User Guide • August 2011 41

Read ZIP+4 File Next

The z4adrnxt() (Read ZIP+4 File Next) function reads subsequent records of the ZIP+4 File. It can only be used
after the z4adrget() function has been called.

Note: Multiple calls to z4adrnxt() can not be mixed with calls to other Address Matching System functions.
 This function is designed to follow a z4adrget(), z4adrprv() or another z4adrnxt() function

 call. The results of z4adrnxt() are undefined if it is called after any other AMS function

Syntax

#include “zip4.h”
int z4adrnxt(ADDR_REC* addrrec);

Input

addrrec A pointer to an empty ADDR_REC structure where the output will be stored.

Output

The addrrec argument will be populated with the next address in the database.

Return

0 - Success
1 - Failure
2 - The USPS Address Matching System not ready

Section 3: API Functions

Address Matching System API User Guide • August 2011 42

Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include “zip4.h”

CITY_REC city;
ADDR_REC addr;

int main(int argc, char** argv)
{

Z4OPEN_PARM openparm;

memset (&openparm, 0, sizeof(openparm));

/* ... Populate openparm ... */

/* open the USPS Address Matching System */
if (z4opencfg(&openparm) != 0)
{

printf(“The USPS Address Matching System failed to open”);

/* Always call z4close() even on open failure */
z4close();

exit(5);

}

/* read a city */
z4ctyget(&city, “00000”);

/* read first address record for this city */
z4adrget(&addr, city.finance);

/* read remaining addrs for this finance number */
while(z4adrnxt(&addr) == 0)
{

/* check if finance number has changed */
if (memcmp(addr.finance, city.finance, 6) != 0)
 break;

/* Code to process the current address record. */

}

/* close The USPS Address Matching System */
z4close();

exit(0);

}

Section 3: API Functions

Address Matching System API User Guide • August 2011 43

Read ZIP+4 File Previous

The z4adrprv() (Read ZIP+4 File Previous) function reads prior records of the ZIP+4 File within a ZIP code. It
can only be used after the z4adrget() function has been called.

Note: Multiple calls to z4adrprv() can not be mixed with calls to other Address Matching System

functions. This function is designed to follow a z4adrget(), z4adrnxt() or another
z4adrprv() function call. The results of z4drprv() are undefined if it is called after any other
AMS function

Syntax

#include “zip4.h”
int z4adrprv(ADDR_REC* addrrec);

Input

addrrec A pointer to an empty ADDR_REC structure where the output will be stored.

Output

The addrrec argument will be populated with the previous address in the database.

Return

0 - Success
1 - Failure
2 - The USPS Address Matching System not ready

Section 3: API Functions

Address Matching System API User Guide • August 2011 44

Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include “zip4.h”

CITY_REC city;
ADDR_REC addr;

int main(int argc, char** argv)
{

Z4OPEN_PARM openparm;

memset (&openparm, 0, sizeof(openparm));

/* ... Populate openparm ... */

/* open the USPS Address Matching System */
if (z4opencfg(&openparm) != 0)
{

printf(“The USPS Address Matching System failed to open”);

/* Always call z4close() even on open failure */
z4close();

exit(5);

}

/* read a city */
z4ctyget(&city, “00000”);

/* read first address record for this city */
z4adrget(&addr, city.finance);

/* read previous addrs for this finance number */
while(z4adrprv(&addr) == 0)
{

/* check if finance number has changed */
if (memcmp(addr.finance, city.finance, 6) != 0)
 break;

/* Code to process the current address record. */

}

/* close The USPS Address Matching System */
z4close();

exit(0);

}

Section 3: API Functions

Address Matching System API User Guide • August 2011 45

Get ZIP Codes from a City/State
The z4getzip() (Get ZIP Codes) from a City/State function retrieves a range of ZIP Codes for a city or state and
returns the valid high and the low values for the input city/state. The standardized form of the input city/state as well
as the finance number is also returned.

Note: All ZIP Codes within the range are not necessarily valid.

Syntax

#include “zip4.h”
int z4getzip(GET_ZIPCODE_STRUCT* parm);

Input

parm A pointer to a GET_ZIPCODE_STRUCT structure to provide the input and where the output will be
stored.

The requested city and state must be populated before calling the function.

parm.input_cityst Input city/state to lookup

Output

parm.output_cityst Standardized city/state
parm.low_zipcode Low ZIP Code value
parm.high_zipcode High ZIP Code value
parm.finance_num Finance number

Return

0 - Success
1 - Failure

Section 3: API Functions

Address Matching System API User Guide • August 2011 46

Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include “zip4.h”

GET_ZIPCODE_STRUCT parm;

int main(int argc, char** argv)
{

Z4OPEN_PARM openparm;

int result;

memset (&openparm, 0, sizeof(openparm));

/* ... Populate openparm ... */

/* open the USPS Address Matching System */
if (z4opencfg(&openparm) != 0)
{

printf(“The USPS Address Matching System failed to open”);
/* Always call z4close() even on open failure */
z4close();

exit(5);

}

/* read a city */
strcpy(parm.input_cityst, “MEMPHIS TN”);
result=z4getzip(&parm);

/* Display the ZIP codes found */
if(result == 0)
{

printf(“CITY FOUND: %s\n”,parm.output_cityst);
printf(“LOW ZIP: %s\n”,parm.low_zipcode);
printf(“HIGH ZIP: %s\n”,parm.high_zipcode);
printf(“FINANCE: %s\n”,parm.finance_num);

}

/* close The USPS Address Matching System */
z4close();

exit(0);

}

Section 3: API Functions

Address Matching System API User Guide • August 2011 47

Terminate Active Address Inquiry
The z4abort() (Terminate Active Address Inquiry) function terminates an active address inquiry and is useful in
real-time applications where each inquiry must be completed within a specified period of time. This function would
normally be called from within a timer interrupt handler. The z4adrinq() call in progress is terminated by the
function call.

Syntax

#include “zip4.h”
int z4abort(void);

Input

None

Output

None

Return

None

Section 3: API Functions

Address Matching System API User Guide • August 2011 48

Get Date of ZIP+4 Database
The z4date() (Get Date of ZIP+4 Database) function returns the date of the ZIP+4 database and prints the date
for PS Form 3553 (CASS certificate). The date is returned as an 8-byte character string in the “YYYYMMDD”
format.

Syntax

#include “zip4.h”
int z4date(char* date);

Input

date A pointer to a char array that will be modified to contain the date of the database. The char array must be
at least nine (9) bytes in length.

Output

The date of the ZIP+4 database. This field must be at least nine (9) bytes in length.

Return

0 - Success
1 - Failure
2 - The USPS Address Matching System not ready

Section 3: API Functions

Address Matching System API User Guide • August 2011 49

Example

#include <stdio.h>
#include <stdlib.h>
#include “zip4.h”

char date[9];

int main(int argc, char** argv)
{

Z4OPEN_PARM openparm;

memset (&openparm, 0, sizeof(openparm));

/* ... Populate openparm ... */

/* open the USPS Address Matching System */
if (z4opencfg(&openparm) != 0)
{

printf(“The USPS Address Matching System failed to open”);

/* Always call z4close() even on open failure */
z4close();

exit(5);

}

/* get release date */
z4date(date);
printf(“Release date: %s\n”, date);

/* close The USPS Address Matching System */

z4close();

exit(0);

}

Section 3: API Functions

Address Matching System API User Guide • August 2011 50

Get AMS Data Expiration
The z4GetDataExpireDays() (Get AMS Data Expiration) function instructs the Address Matching System to
return the number of days until the AMS database expires. Because the function can be used periodically to check
the number of days remaining until database expiration, it is strongly recommended that you integrate this function
into your software.

Note: This function replaces the z4expire() function.

Syntax

#include “zip4.h”
int z4GetDataExpireDays(void);

Input

None

Output

None

Return

-1 The AMS database has expired. Otherwise, the number of days until the AMS database expires.

Section 3: API Functions

Address Matching System API User Guide • August 2011 51

Example

#include <stdio.h>
#include <stdlib.h>
#include “zip4.h”

int main(int argc, char** argv)
{

Z4OPEN_PARM openparm;

int days = 0;

memset (&openparm, 0, sizeof(openparm));

/* ... Populate openparm ... */

/* open the USPS Address Matching System */
if (z4opencfg(&openparm) != 0)
{

printf(“The USPS Address Matching System failed to open”);

/* Always call z4close() even on open failure */
z4close();
exit(5);

}

/* get number of days until database expiration */
days = z4GetDataExpireDays();

if (days == -1)
 printf(“AMS database has already expired.\n”);
else

printf(“%d days until AMS database expiration.\n”, days);

/* close The USPS Address Matching System */
z4close();

}

Section 3: API Functions

Address Matching System API User Guide • August 2011 52

Get AMS Library Expiration
The z4GetCodeExpireDays() (Get AMS Library Expiration) function instructs the Address Matching System
to return the number of days until the AMS library expires. Because the function can be used periodically to check
the number of days remaining until library expiration, it is strongly recommended that you integrate this function
into your software.

Syntax

#include “zip4.h”
int z4GetCodeExpireDays(void);

Input

None

Output

None

Return

-1 – The AMS library has expired. Otherwise, the number of days until the AMS library expires.

Section 3: API Functions

Address Matching System API User Guide • August 2011 53

Example

#include <stdio.h>
#include <stdlib.h>
#include “zip4.h”

int main(int argc, char** argv)
{

Z4OPEN_PARM openparm;

int days = 0;

memset (&openparm, 0, sizeof(openparm));

/* ... Populate openparm ... */

/* open the USPS Address Matching System */
if (z4opencfg(&openparm) != 0)
{

printf(“The USPS Address Matching System failed to open”);

/* Always call z4close() even on open failure */
z4close();

exit(5);

}
/* get number of days until database expiration */
days = z4GetCodeExpireDays();

if (days == -1)

printf(“AMS library has already expired.\n”);
else

printf(“%d days until AMS library expiration.\n”, days);

/* close The USPS Address Matching System */
z4close();

}

Section 3: API Functions

Address Matching System API User Guide • August 2011 54

Get API Code Version
The z4ver() (Get API Code Version) function commands the program to retrieve the version string of the API
code. This string is in compliance with the CASS requirements for address matching software version information
and may be used when generating a PS Form 3553 for mailing discounts.

Note: Most functions require you to call z4opencfg() first to initialize the AMS system. This function does not

require the AMS system to be open.

Syntax

#include “zip4.h”
int z4ver(char* ver);

Input

ver A pointer to a char array where the output will be stored.

Output

The ver argument will be populated with the version string.

Return

0 - Success

Example

#include <stdio.h>
#include “zip4.h”

void main(void)
{

char version[32];

/* get the Address Matching System version */
z4ver(version) ;

printf(“The Address Matching System version is %s\n”, version) ;
exit (0);

}

Section 3: API Functions

Address Matching System API User Guide • August 2011 55

Multiple Response Stack
Scroll the Stack of Address Records

The z4scroll() (Scroll the Stack of Address Records) function commands the Address Matching System to
access additional stacks of ten address records each. The function is related to the z4adrinq() and z4xrfinq()
functions, which return up to ten records when the Z4_MULTIPLE or Z4_DEFAULT return codes are set. When
the parm.respn field contains a number greater than ten, your program can use this function to obtain additional
stacks of ten address records (up to the number of records specified in the parm.respn return field). This function
may only be called immediately after a call to the z4adrinq() or z4xrfinq() functions.

Syntax

#include “zip4.h”
int z4scroll(ZIP4_PARM* parm);

Input

parm A pointer to the unmodified ZIP4_PARM structure that was returned from a previous z4adrinq() call.

Output

The parm.stack field will be updated to contain the next ten records (fewer records may be returned if less than
ten records remain).

Return

0 - Success
1 - The USPS Address Matching System not installed
2 - The USPS Address Matching System not open
3 - Stack access not allowed

Section 3: API Functions

Address Matching System API User Guide • August 2011 56

Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include “zip4.h”

ZIP4_PARM parm;

int main(int argc, char** argv)
{

Z4OPEN_PARM openparm;

int i = 0;

memset (&openparm, 0, sizeof(openparm));

/* ... Populate openparm ... */

/* open the USPS Address Matching System */
if (z4opencfg(&openparm) != 0)
{

printf(“The USPS Address Matching System failed to open”);

/* Always call z4close() even on open failure */
z4close();

exit(5);

}
/* Create parameter list and call the USPS Address Matching System */
memset(&parm, 0, sizeof(parm));

strcpy(parm.iadl1, “1336 CHATMAN”);
strcpy(parm.ictyi, “CORDOVA TN”);

z4adrinq(&parm);

/*process all addresses returned by The USPS Address Matching System */
for(i=0; i<parm.respn; i++)
{

/* check if stack needs to be refreshed */
if (i != 0 && (i% 10) == 0)
{
 if(z4scroll(&parm))
 break;
}

/* examine each address returned by The USPS Address Matching System */
...
}
/* close The USPS Address Matching System */
z4close();

exit(0);

}

Section 3: API Functions

Address Matching System API User Guide • August 2011 57

Get Last Error
The z4geterror() (Get Last Error) function retrieves the last error that was encountered after a failed
z4opencfg() function call.

Syntax

#include “zip4.h”
int z4geterror(Z4_ERROR* pError);

Input

pError Pointer to an empty Z4_ERROR structure where the output will be stored.

Output

pError will be populated with the last error that was encountered.

Return

#defines for the iErrorCode values and their meanings:

EROR_FILE_OPEN 1 Error opening a file
ERROR_FILE_READ 2 Error reading a file
ERROR_FILE_WRITE 3 Error writing to a file
ERROR_FILE_FIND 4 Error finding a file
ERROR_FILE_EXPIRE 5 AMS library has expired
ERROR_FILE_SYNC 6 AMS Database files are out of sync
ERROR_SECURITY 7 AMS Security error

Section 3: API Functions

Address Matching System API User Guide • August 2011 58

Example

#include <stdio.h>
#include <string.h>
#include “zip4.h”

int main(int argc, char** argv)
{

Z4_ERROR errorparm;
Z4_ENV envparm;
Z4OPEN_PARM openparm;
memset(&errorparm, 0, sizeof(Z4_ERROR));
memset(&envparm, 0, sizeof(Z4_ENV));
memset(&openparm, 0, sizeof(Z4OPEN)PARM));

/* ... Populate openparm ... */
/* open the USPS Address Matching System */
if(z4opencfg(&openparm) != 0)
{

printf(“The USPS Address Matching System failed to open”);
z4getenv(&envparm);
z4geterror(&errorparm);

/* Detailed Error Information */
printf(“\n\nDETAILED ERROR INFORMATION\n”);
printf(“--------------------------\n”)
printf(“Error Message: %s\n”, errorparm.strErrorMessage);
printf(“File Name: %s\n”, errorparm.strFileName);
printf(“Diagnostics: %s\n”, errorparm.strDiagnostics);

/* Detailed Environment Information */
printf(“\n\nDETAILED ENVIRONMENT INFORMATION\n”);
printf(“--------------------------------\n”);
printf(“Configuration File: %s\n”, envparm.strConfigFile);
printf(“Address1: %s\n”, envparm.address1);
printf(“AddrIndex: %s\n”, envparm.addrindex);
printf(“CityState: %s\n”, envparm.citystate);
printf(“CrossRef: %s\n”, envparm.crossref);
printf(“System: %s\n”, envparm.system);
printf(“eLOT: %s\n”, envparm.elot);
printf(“eLOTIndex: %s\n”, envparm.elotindex);
printf(“EWS Path: %s\n”, envparm.ewspath);
printf(“eLOT Flag: %s\n”, envparm.elotflag);

}
else
{

printf(“The USPS Address Matching System opened successfully\n”);
}
return 0;

}

Section 3: API Functions

Address Matching System API User Guide • August 2011 59

Get Environment
The z4getenv() (Get Environment) function retrieves the environment for the Address Matching System.

Syntax

#include “zip4.h”
int z4getenv(Z4_ENV* pEnv);

Input

pEnv Pointer to an empty Z4_ENV structure where the output will be stored.

Output

pEnv will be populated with the environment for the Address Matching System.

Return

0 – Success

Example

See example code for “Get Last Error” (page 57)

Section 3: API Functions

Address Matching System API User Guide • August 2011 60

Retrieving the LACSLink® Security Key

The z4LLkGetKey() function returns the stop processing security key used to disable LACSLink®. A stop
processing security key is an alphanumeric character string that is randomly generated when a LACSLink® security
violation occurs.

You may call the z4LLkGetKey() function after a LACSLink® security violation occurs. In order to identify a
LACSLink® security violation, a return value of 7 (seven) is given after making an open call. At that point you may
call z4LLkGetKey() to retrieve the randomly generated stop processing security key.

The stop processing security key returned from z4LLkGetKey() will be used to generate the corresponding
enable security key you need for z4LLkSetKey(). You can obtain an enable security key from a customer care
representative in exchange for the stop processing security key given to you by z4LLkGetKey().

Note: During a z4LLkGetKey() call OS resources are allocate so a call to z4close() must be made in

order to free the resources.

Syntax
#include “zip4.h”
const char* Z4FUNC z4LLkGetKey(void);

Input

None

Output

None

Return

const char* - pointer to a null terminated alphanumeric character string

Section 3: API Functions

Address Matching System API User Guide • August 2011 61

Example

#include <stdio.h>
#include “zip4.h”

void main(void)
{

Z4OPEN_PARM OpenParm;
char szKey[32] = {0};
int iReturn = 0;

memset(&openparm, 0, sizeof(Z4OPEN_PARM));

/* Setting up paths */
OpenParm.config.address1 = “c:\\amsdata\\”;
OpenParm.config.addrindex = “c:\\amsdata\\”;
OpenParm.config.cdrom = “d:\\”;

OpenParm.config.citystate = “c:\\amsdata\\”;
OpenParm.config.crossref = “c:\\amsdata\\”;
OpenParm.config.system = “c:\\amsdata\\”;
OpenParm.config.llkpath = “c:\\llkdata\\”;
OpenParm.config.dpvpath = “c:\\dpvdata\\”;

/* open the USPS Address Matching System */
iReturn = z4opencfg(&OpenParm);

/* success */
if(iReturn == 0)
{

printf("\nThe USPS Address Matching System Opened

Successfully.");
}
/* LACSLink security violation */
else if(iReturn == 7)
{

const char* szCode = z4LLkGetKey();

/* display error message an security code */
printf("\nLACSLink has been disabled.");
printf("\n\nSecurity code: %s", szCode);
printf("\nTo enable LACSLink contact customer support with the

security");
printf("\ncode above to receive the security key you need to

enable LACSLink\n");

/* prompt for security key */
printf("\nEnter security key w/o formatting characters: ");
gets(szKey);

Section 3: API Functions

Address Matching System API User Guide • August 2011 62

/* verify security key */
if(z4LLkSetKey(szKey))
{

/* inform user of success */
printf("\nThe key %s is valid and LACSLink is enabled.",

szKey);
}
else
{

/* inform user of failure */
printf("\nThe key %s is invalid and LACSLink is disabled.",

szKey);
}

}
/* other errors */
else
{

printf("\nError Opening the USPS Address Matching System.");
}

/* close the USPS Address Matching System */
z4close();

}

Section 3: API Functions

Address Matching System API User Guide • August 2011 63

Checking for LACSLink functionality

The z4LLkIsDisabled() identifies when LACSLink® functionality is enable/disabled. When the return value
from z4LLkIsDisabled() is TRUE (non-zero) LACSLink® is disabled otherwise LACSLink® is enabled.

Before LACSLink® can be enabled a system open call must be made with the Z4OPEN_PARM.llkflag set to 'Y',
and the Z4OPEN_PARM.config.llkpath containing the path to the LACSLink® data files. After the open call
you may check the state of LACSLink® via z4LLkIsDisabled().

Note: During a z4LLkIsDisabled() call OS resources may be allocate so a call to z4close() must be

made in order to free the resources.

Syntax
#include “zip4.h”
int Z4FUNC z4LLkIsDisabled(void);

Input

None

Output

None

Return

TRUE - LACSLink® is disabled
FALSE - LACSLink® is enabled

Section 3: API Functions

Address Matching System API User Guide • August 2011 64

Example
#include <stdio.h>
#include “zip4.h”

void main(void)
{
 Z4OPEN_PARM OpenParm;

char szKey[32] = {0};
int iReturn = 0;

memset(&openparm, 0, sizeof(Z4OPEN_PARM));

/* Setting up paths */
OpenParm.config.address1 = “c:\\amsdata\\”;
OpenParm.config.addrindex = “c:\\amsdata\\”;
OpenParm.config.cdrom = “d:\\”;
OpenParm.config.citystate = “c:\\amsdata\\”;
OpenParm.config.crossref = “c:\\amsdata\\”;
OpenParm.config.system = “c:\\amsdata\\”;
OpenParm.config.llkpath = "c:\\llkdata\\”;
OpenParm.config.dpvpath = “c:\\dpvdata\\”;

/* open the USPS Address Matching System */
iReturn = z4opencfg(&OpenParm);

 /* success */

if(iReturn == 0)
{

printf("\nThe USPS Address Matching System Opened Successfully.");
 }

/* LACSLink security violation */
else if(iReturn == 7)
{

const char* szCode = z4LLkGetCode();

/* display error message an security code */
printf("\nLACSLink has been disabled.");
printf("\n\nSecurity code: %s", szCode);
printf("\nTo enable LACSLink contact customer support with the

security");
printf("\ncode above to receive the security key you need to

enable LACSLink\n");

/* prompt for security key */
printf("\nEnter security key w/o formatting characters: ");
gets(szKey);

Section 3: API Functions

Address Matching System API User Guide • August 2011 65

/* verify security key */
if(z4LLkSetKey(szKey))
{

/* inform user of success */
printf("\nThe key %s is valid and LACSLink is enabled.", szKey);
}
else
{

/* inform user of failure */
printf("\nThe key %s is invalid and LACSLink is disabled.",

szKey);
}

}
/* other errors */
else
{

printf("\nError Opening the USPS Address Matching System.");
}

/* close the USPS Address Matching System */
z4close();

}

Section 3: API Functions

Address Matching System API User Guide • August 2011 66

Disabling the LACSLink® Security Key

The z4LLkSetKey() function verifies the stop processing security key used for enabling LACSLink® after a
LACSLink® security violation. A security key is an alphanumeric character string given to you by a customer care
representative in exchange for the security code given to you by z4LLkGetCode().

Make a call to z4LLkSetKey() after a LACSLink® security violation. In order to identify a LACSLink® security
violation, a return value of 7 (seven) is given after making an open call. At that point you may call
z4LLkSetKey() with the security key provided to you by some customer care representative.

A status of TRUE (non-zero) is returned to identify success (LACSLink® is enabled) otherwise failure occurred
(LACSLink® is disabled).

Note: z4LLkSetKey() must be called after a z4opencfg() function call. Even if the z4opencfg()

 function call fails to open AMS, it has put AMS in a state to be able to accept the key information.

Since this process causes AMS to allocate OS resources, the z4close() function call must be called in
orde to allow AMS to free those resources.

Syntax
#include “zip4.h”
int Z4FUNC z4LLkSetKey(const char* szKey);

Input

szKey A pointer to a null terminated alphanumeric character string

Output

None

Return

TRUE - The key update is successful and LACSLink is enabled
FALSE - The key update failed and LACSLink is disabled

Section 3: API Functions

Address Matching System API User Guide • August 2011 67

Example
#include <stdio.h>
#include “zip4.h”
void main(void)
{

Z4OPEN_PARM OpenParm;
char szKey[32] = {0};
int iReturn = 0;

memset(&OpenParm, 0, sizeof(Z4OPEN_PARM));

/* Setting up paths */
OpenParm.config.address1 = “c:\\amsdata\\”;
OpenParm.config.addrindex = “c:\\amsdata\\”;
OpenParm.config.ctystate = “c:\\amsdata\\”;
OpenParm.config.crossref = “c:\\amsdata\\”;
OpenParm.config.system = “c:\\bin\\”;

 OpenParm.config.llkpath = “c:\\llkdata\\”;
OpenParm.config.dpvpath = “c:\\dpvdata\\”;

/* open the USPS Address Matching System */
iReturn = z4opencfg(&OpenParm);

/* success */
if(iReturn == 0)
{
printf("\nThe USPS Address Matching System Opened Successfully.");

 }
/* LACSLink security violation */
else if(iReturn == 7)
{

const char* szCode = z4LLkGetCode();

/* display error message an security code */
printf("\nLACSLink has been disabled.");
printf("\n\nSecurity code: %s", szCode);
printf("\nTo enable LACSLink contact customer support with the

security");
printf("\ncode above to receive the security key you need to

enable LACSLink\n");

/* prompt for security key */
printf("\nEnter security key w/o formatting characters: ");
gets(szKey);

Section 3: API Functions

Address Matching System API User Guide • August 2011 68

/* verify security key */
if(z4LLkSetKey(szKey))
{

/* inform user of success */
printf("\nThe key %s is valid and LACSLink is enabled.",

szKey);
}
else
{

/* inform user of failure */
printf("\nThe key %s is invalid and LACSLink is disabled.",

szKey);
}

}
/* all other errors */
else
{

printf("\nError Opening the USPS Address Matching System.");
}

/* close the USPS Address Matching System */
z4close();

}

Section 3: API Functions

Address Matching System API User Guide • August 2011 69

SUITELINK™ Database Date

The z4SLNKGetDate() function returns the date of the SuiteLink™ database. The date is returned as an 8-byte
character character string in the YYYYMMDD format.

Syntax

#include “zip4.h”
const char* Z4FUNC z4SLNKGetDate(int iID);

Notes: The date string is null terminated and always returned unless the SUITELink™ library is not loaded correctly

or the database is not found. The return value is zero/null when the date string is not returned.

Input

iID A numerical value identifying a data table or -1 for entire database.

Output

None

Return

A pointer to a NULL terminated char array that contains the date associated with the table(s) in the database.
Format: YYYYMMDD.

Example

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include “zip4.h”

ZIP4_PARM parm;

int main(int argc, char** argv)
{

Z4OPEN_PARM openparm;

memset (&openparm, 0, sizeof(openparm));

/* ... Populate openparm ... */

/* open the USPS Address Matching System */
if (z4opencfg(&openparm) != 0)
{

printf(“The USPS Address Matching System failed to open”);

/* Always call z4close() even on open failure */

z4close();

exit(5);

}

Section 3: API Functions

Address Matching System API User Guide • August 2011 70

/* get datatbase date */
printf(“SuiteLink database date: %s\n”, z4SLNKGetDate (-1));

/* load input address parameters */
memset(&parm, 0, sizeof(parm));
strcpy(parm.iadl2, “ACME TOOL AND DIE”);/* Firm line */
strcpy(parm.iadl3, “”);/* Secondary or extra line*/
strcpy(parm.iadl1, “323 S 152ND ST”);/* Primary address line */
strcpy(parm.iprurb, “”);/* Puerto Rico specific */
strcpy(parm.ictyi, “OMAHA, NE 68154);/* City, State, ZIP */

/* request address inquiry */
z4adrinq(&parm);

/* request SuiteLink inquiry */
z4SLNKQuery(&parm);

/* close The USPS Address Matching System */
z4close();
exit(0);

}

Section 3: API Functions

Address Matching System API User Guide • August 2011 71

SUITELINK™ Error Code

The z4SLNKGetError() function retrieves the last error encountered during SuiteLink™ processing.

Syntax

#include “zip4.h”
long Z4FUNC z4SLNKGetError(void);

Notes: This interface does not return AMS errors, it only returns errors pertaining strictly to SUITELink™. The

purpose of this function is to aid in debugging and logging issues.

Input

None

Output

None

Return

Integer value identifying the last error

Example

See example code for SuiteLink Error Message (page 72)

Section 3: API Functions

Address Matching System API User Guide • August 2011 72

SUITELINK™ Error Message

The z4SLNKGetErrorMsg()function retrieves the last error encountered during a SuiteLink™ lookup.

Syntax

#include “zip4.h”
const char* Z4FUNC z4SLNKGetErrorMsg(void);

Notes: This is a null terminated ASCII string and it may not be formatted enough for user feedback.

Input

None

Output

None

Return

A pointer to a Null terminated char array containing a text description of the last error.

Example

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include “zip4.h”

ZIP4_PARM parm;

int main(int argc, char** argv)
{

Z4OPEN_PARM openparm;

memset (&openparm, 0, sizeof(openparm));

/* ... Populate openparm ... */

/* open the USPS Address Matching System */
if (z4opencfg(&openparm) != 0)
{

printf(“The USPS Address Matching System failed to open”);

/* SuiteLink Error */
printf(“Error %d: %s\n”, z4SLNKGetError(),

z4SLNKGetErrorMsg());

/* Always call z4close() even on open failure */

z4close();

exit(5);

}

/* load input address parameters */

Section 3: API Functions

Address Matching System API User Guide • August 2011 73

memset(&parm, 0, sizeof(parm));
strcpy(parm.iadl2, “ACME TOOL AND DIE”);/* Firm line */
strcpy(parm.iadl3, “”);/* Secondary or extra line*/
strcpy(parm.iadl1, “323 S 152ND ST”);/* Primary address line */
strcpy(parm.iprurb, “”);/* Puerto Rico specific */
strcpy(parm.ictyi, “OMAHA, NE 68154);/* City, State, ZIP */

/* request address inquiry */
z4adrinq(&parm);

/* request SuiteLink inquiry */
z4SLNKQuery(&parm);

/* if a response found (either single or default) */
if(parm.retcc==Z4_SINGLE || parm.retcc==Z4_DEFAULT)
{

printf(“Found response.\n”);
printf(“Name: %s\n”, parm.dadl2);
printf(“S Addr: %s\n”, parm.dad13);
printf(“Addr: %s\n”, parm.dadl1);
printf(“PRUrb: %s\n”, parm.dprurb);
printf(“City: %s\n”, parm.dctya);
printf(“ST: %s\n”, parm.dstaa);
printf(“ZIP: %s\n”, parm.zipc);
printf(“Addon: %s\n”, parm.addon);
printf(“DPBC: %s\n”, parm.dpbc);
printf(“Pre Dir: %s\n”, parm.stack[0].pre_dir);{
printf(“Str Name: %s\n”, parm.stack[0].str_name);
printf(“Suffix: %s\n”, parm.stack[0].suffix);
printf(“Post Dir: %s\n”, parm.stack[0].post_dir);
printf(“Lacs Ind: %c\n”, parm.stack[0].lacs_status);

 }

 /* close The USPS Address Matching System */
 z4close();

 exit(0)

}

Section 3: API Functions

Address Matching System API User Guide • August 2011 74

SUITELINK™ Query

The z4SLNKQuery() function should be used to correct missing seconday information when a call from
z4adrinq() returns a default (32) response.

Syntax

#include “zip4.h”
int Z4FUNC z4SLNKQuery(ZIP4_PARM* pZip4);

Notes: If successful the parm.dadl1 address line will contain the secondary information found during the

query.
 The parm.stelnkfoot will contain one of the following values to identify the status of the query.
 “A “ - Confirmed entire address
 “00” - Could not confirm address
 “” - Address was not submitted for confirmation

Input

pZip4 A pointer to a ZIP4_PARM structure that contains the address to perform the query on. The contents
 of the structure will be altered to contain the secondary information for the input address.

Output

None

Return

TRUE - The address was confirmed
FALSE - The address was not confirmed.

Example

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include “zip4.h”

ZIP4_PARM parm;

int main(int argc, char** argv)
{

Z4OPEN_PARM openparm;

memset (&openparm, 0, sizeof(openparm));

/* ... Populate openparm ... */

/* open the USPS Address Matching System */
if (z4opencfg(&openparm) != 0)
{

printf(“The USPS Address Matching System failed to open”);

/* Always call z4close() even on open failure */

z4close();

exit(5);

}

/* load input address parameters */

Section 3: API Functions

Address Matching System API User Guide • August 2011 75

memset(&parm, 0, sizeof(parm));
strcpy(parm.iadl2, “ACME TOOL AND DIE”);/* Firm line */
strcpy(parm.iadl3, “”);/* Secondary or extra line*/
strcpy(parm.iadl1, “323 S 152ND ST”);/* Primary address line */
strcpy(parm.iprurb, “”);/* Puerto Rico specific */
strcpy(parm.ictyi, “OMAHA, NE 68154);/* City, State, ZIP */

/* request address inquiry */
z4adrinq(&parm);

/* request SuiteLink inquiry */
z4SLNKQuery(&parm);

/* if a response found (either single or default) */
if(parm.retcc==Z4_SINGLE || parm.retcc==Z4_DEFAULT)

 {
printf(“Found response.\n”);
printf(“Name: %s\n”, parm.dadl2);
printf(“S Addr: %s\n”, parm.dad13);
printf(“Addr: %s\n”, parm.dadl1);
printf(“PRUrb: %s\n”, parm.dprurb);
printf(“City: %s\n”, parm.dctya);
printf(“ST: %s\n”, parm.dstaa);
printf(“ZIP: %s\n”, parm.zipc);
printf(“Addon: %s\n”, parm.addon);
printf(“DPBC: %s\n”, parm.dpbc);
printf(“Pre Dir: %s\n”, parm.stack[0].pre_dir);{
printf(“Str Name: %s\n”, parm.stack[0].str_name);
printf(“Suffix: %s\n”, parm.stack[0].suffix);
printf(“Post Dir: %s\n”, parm.stack[0].post_dir);
printf(“Lacs Ind: %c\n”, parm.stack[0].lacs_status);

 }

 /* close The USPS Address Matching System */
 z4close();

 exit(0)

}

Section 3: API Functions

Address Matching System API User Guide • August 2011 76

Abbreviated Street Address Query
The z4ABSQuery() function performs an abbreviated address lookup on a returned z4adrinq() address. This
optional call identifies a street address line exceeding thirty (30) characters and returns a thirty (30) character or less
abbreviation.

Syntax

#include “zip4.h”
int Z4FUNC z4ABSQuery (ZIP4_PARM* pZip4, TAbbrSt* pAbbrSt);

Input

pZip4 A pointer to the ZIP4_PARM that was used during the preceding z4adrinq() call.
pAbbrSt A pointer to an empty TAbbrSt structure where the output will be stored.

Output

pAbbrSt will be populated with the abbreviated street information.

Return

TRUE – A successful lookup was completed.
FALSE – An abbreviated address lookup was unsuccessful.

Example

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include “zip4.h”

ZIP4_PARM parm;
TAbbrSt pStreet[1];

int main(int argc, char** argv)
{

Z4OPEN_PARM openparm;

memset (&openparm, 0, sizeof(openparm));

/* ... Populate openparm ... */

/* open the USPS Address Matching System */
if (z4opencfg(&openparm) != 0)
{

printf(“The USPS Address Matching System failed to open”);

/* Always call z4close() even on open failure */

z4close();

exit(5);

}

/* load input address parameters */
memset(&parm, 0, sizeof(parm));
strcpy(parm.iadl2, “ACME TOOL AND DIE”);/* Firm line */
strcpy(parm.iadl3, “UNIT 1”);/* Secondary or extra line*/
strcpy(parm.iadl1, “100 TYNGSBOROUGH BUSINESS PK DR”); /* Primary */
strcpy(parm.iprurb, “”);/* Puerto Rico specific */
strcpy(parm.ictyi, “TYNGSBORO, MA 01879”);/* City, State, ZIP */

Section 3: API Functions

Address Matching System API User Guide • August 2011 77

/* request address inquiry */
z4adrinq(&parm);

/* request abbrivated iquiry */
z4ABSQuery(&parm, pStreet);

/* if a response found (either single or default) */
if(parm.retcc==Z4_SINGLE || parm.retcc==Z4_DEFAULT)

 {
printf(“Found response.\n”);
printf(“Name: %s\n”, parm.dadl2);
printf(“S Addr: %s\n”, parm.dad13);
printf(“Addr: %s\n”, pStreet->szAddress);
printf(“PRUrb: %s\n”, parm.dprurb);
printf(“City: %s\n”, parm.dctya);
printf(“ST: %s\n”, parm.dstaa);
printf(“ZIP: %s\n”, parm.zipc);
printf(“Addon: %s\n”, parm.addon);
printf(“DPBC: %s\n”, parm.dpbc);
printf(“Pre Dir: %s\n”, parm.stack[0].pre_dir);{
printf(“Str Name: %s\n”, parm.stack[0].str_name);
printf(“Suffix: %s\n”, parm.stack[0].suffix);
printf(“Post Dir: %s\n”, parm.stack[0].post_dir);
printf(“Lacs Ind: %c\n”, parm.stack[0].lacs_status);

 }

 /* close The USPS Address Matching System */
 z4close();

 exit(0)

}

Section 4: Footnote Flags

Address Matching System API User Guide • August 2011 78

Section 4: Footnote Flags

A ZIP CODE CORRECTED

The address was found to have a different 5-digit ZIP Code than given in the submitted list. The correct
ZIP Code is shown in the output address.

B CITY / STATE SPELLING CORRECTED

The spelling of the city name and/or state abbreviation in the submitted address was found to be different
than the standard spelling. The standard spelling of the city name and state abbreviation are shown in the
output address.

C INVALID CITY / STATE / ZIP

The ZIP Code in the submitted address could not be found because neither a valid city, state, nor valid 5-
digit ZIP Code was present. It is also recommended that the requestor check the submitted address for
accuracy.

D NO ZIP+4 ASSIGNED

This is a record listed by the United States Postal Service on the national ZIP+4 file as a non-deliverable
location. It is recommended that the requestor verify the accuracy of the submitted address.

E ZIP CODE ASSIGNED FOR MULTIPLE RESPONSE

 Multiple records were returned, but each shares the same 5-digit ZIP Code.

F ADDRESS COULD NOT BE FOUND IN THE NATIONAL DIRECTORY FILE DATABASE

The address, exactly as submitted, could not be found in the city, state, or ZIP Code provided. It is also

recommended that the requestor check the submitted address for accuracy. For example, the street address

line may be abbreviated excessively and may not be fully recognizable.

G INFORMATION IN FIRM LINE USED FOR MATCHING

Information in the firm line was determined to be a part of the address. It was moved out of the firm line
and incorporated into the address line.

H MISSING SECONDARY NUMBER

ZIP+4 information indicates this address is a building. The address as submitted does not contain an
apartment/suite number. It is recommended that the requestor check the submitted address and add the
missing apartment or suite number to ensure the correct Delivery Point Barcode (DPBC).

I INSUFFICIENT / INCORRECT ADDRESS DATA

More than one ZIP+4 Code was found to satisfy the address as submitted. The submitted address did not
contain sufficiently complete or correct data to determine a single ZIP+4 Code. It is recommended that the
requestor check the address for accuracy and completeness. For example, firm name, or institution name,
doctor’s name, suite number, apartment number, box number, floor number, etc. may be missing or
incorrect. Also pre-directional or post-directional indicators (North = N, South = S, East = E, West = W,
etc.) and/or street suffixes (Street = ST, Avenue = AVE, Road = RD, Circle = CIR, etc.) may be missing or
incorrect.

Deleted: Section 4: Record Types

Section 4: Footnote Flags

Address Matching System API User Guide • August 2011 79

J DUAL ADDRESS

 The input contained two addresses. For example: 123 MAIN ST PO BOX 99.

K MULTIPLE RESPONSE DUE TO CARDINAL RULE

CASS rule does not allow a match when the cardinal point of a directional changes more than 90%.

L ADDRESS COMPONENT CHANGED

An address component (i.e., directional or suffix only) was added, changed, or deleted in order to achieve a
match.

M STREET NAME CHANGED

The spelling of the street name was changed in order to achieve a match.

N ADDRESS STANDARDIZED

The delivery address was standardized. For example, if STREET was in the delivery address, the system
will return ST as its standard spelling.

O LOWEST +4 TIE-BREAKER

More than one ZIP+4 Code was found to satisfy the address as submitted. The lowest ZIP +4 addon may
be used to break the tie between the records.

P BETTER ADDRESS EXISTS

The delivery address is matchable, but is known by another (preferred) name. For example, in New York,
NY, AVENUE OF THE AMERICAS is also known as 6TH AVE. An inquiry using a delivery address of
55 AVE OF THE AMERICAS would be flagged with a Footnote Flag P.

Q UNIQUE ZIP CODE MATCH

Match to an address with a unique ZIP Code.

R NO MATCH DUE TO EWS

The delivery address is matchable, but the EWS file indicates that an exact match will be available soon.

S INCORRECT SECONDARY ADDRESS

The secondary information (i.e., floor, suite, apartment, or box number) does not match that on the national
ZIP+4 file. This secondary information, although present on the input address, was not valid in the range
found on the national ZIP+4 file.

T MULTIPLE RESPONSE DUE TO MAGNET STREET SYNDROME

The search resulted in a single response; however, the record matched was flagged as having magnet street
syndrome. “Whenever an input address has a single suffix word or a single directional word as the street
name, or whenever the ZIP+4 File records being matched to have a single suffix word or a single
directional word as the street name field, then an exact match between the street, suffix and/or post-
directional and the same components on the ZIP+4 File must occur before a match can be made. Adding,
changing or deleting a component from the input address to obtain a match to a ZIP+4 record will be
considered incorrect.” Instead of returning a “no match” in this situation a multiple response is returned to
allow access the candidate record.

U UNOFFICIAL POST OFFICE NAME

The city or post office name in the submitted address is not recognized by the United States Postal Service
as an official last line name (preferred city name), and is not acceptable as an alternate name. This does
denote an error and the preferred city name will be provided as output.

Deleted: Section 4: Record Types

Section 4: Footnote Flags

Address Matching System API User Guide • August 2011 80

V UNVERIFIABLE CITY / STATE
The city and state in the submitted address could not be verified as corresponding to the given 5-digit ZIP
Code. This comment does not necessarily denote an error; however, it is recommended that the requestor
check the city and state in the submitted address for accuracy.

W INVALID DELIVERY ADDRESS
The input address record contains a delivery address other than a PO BOX, General Delivery, or
Postmaster with a 5-digit ZIP Code that is identified as a “small town default.” The United States Postal
Service does not provide street delivery for this ZIP Code. The United States Postal Service requires use of
a PO BOX, General Delivery, or Postmaster for delivery within this ZIP Code.

X UNIQUE ZIP CODE GENERATED

Default match inside a unique ZIP Code.

Y MILITARY MATCH

Match made to a record with a military ZIP Code.

Z MATCH MADE USING THE ZIPMOVE PRODUCT DATA

The ZIPMOVE product shows which ZIP + 4 records have moved from one ZIP Code to another. If an
input address matches to a ZIP + 4 record which the ZIPMOVE product indicates as having moved, the
search is performed again in the new ZIP Code.

Deleted: Section 4: Record Types

Section 5: Record Types

Address Matching System API User Guide • August 2011 81

Section 5: Record Types

F FIRM

 This is a match to a Firm Record, which is the finest level of match available for an address.

G GENERAL DELIVERY

 This is a match to a General Delivery record.

H BUILDING / APARTMENT

 This is a match to a Building or Apartment record.

P POST OFFICE BOX

 This is a match to a Post Office Box.

R RURAL ROUTE or HIGHWAY CONTRACT

 This is a match to either a Rural Route or a Highway Contract record, both of which may have
 associated Box Number ranges.

S STREET RECORD

 This is a match to a Street record containing a valid primary number range.

Section 6: Return Codes

Address Matching System API User Guide • August 2011 82

Section 6: Return Codes

10 INVALID DUAL ADDRESS

Information presented could not be processed in current format. Corrective action is needed. Be sure that
the address line components are correct. For example, the input address line may contain more than one
delivery address.

11 INVALID CITY/ST/ZIP

The ZIP Code in the submitted address could not be found because neither a valid city, state, nor valid 5-
digit ZIP Code was present. Corrective action is needed. It is also recommended that the requestor check
the submitted address for accuracy.

12 INVALID STATE

The state in the submitted address is invalid. Corrective action is needed. It is also recommended that the
requestor check the submitted address for accuracy.

13 INVALID CITY

The city in the submitted address is invalid. Corrective action is needed. It is also recommended that the
requestor check the submitted address for accuracy.

21 NOT FOUND

The address, exactly as submitted, could not be found in the national ZIP+4 file. It is recommended that the
requestor check the submitted address for accuracy. For example, the street address line may be abbreviated
excessively and may not be fully recognizable.

22 MULTIPLE RESPONSE

More than one ZIP+4 Code was found to satisfy the address submitted. The submitted address did not
contain sufficiently complete or correct data to determine a single ZIP+4 Code. It is recommended that the
requestor check the address for accuracy and completeness. Address elements may be missing

31 EXACT MATCH.

Single response based on input information. No corrective action is needed since an exact match was found
in the national ZIP+4 file.

32 DEFAULT MATCH

A match was made to a default record in the national ZIP+4 file. A more specific match may be available if
a secondary number (i.e., apartment, suite, etc.) exists.

Appendix A: Interface Definition

Address Matching System API User Guide • August 2011 83

Appendix A: Interface Definition

#ifndef ZIP4_H /* avoid redefinition */
#define ZIP4_H
/**/
/* This record describes an address record. The record format is the same as */
/* the USPS ZIP+4 File. Please see the USPS Address Information Products */
/* Technical Guide for information on this record. */
/* NOTE: All ‘char’ array fields contain an extra byte (+1) for the null */
/* terminator. */
/**/
typedef struct
{

char detail_code; /* copyright detail code */
char zip_code[5+1]; /* zip code */
char update_key[10+1]; /* update key number */
char action_code; /* action code */
char rec_type; /* record type */
char carr_rt[4+1]; /* carrier route */
char pre_dir[2+1]; /* pre-direction abbrev */
char str_name[28+1]; /* street name */
char suffix[4+1]; /* suffix abbrev */
char post_dir[2+1]; /* post-direction abbrev */
char prim_low[10+1]; /* primary low range */
char prim_high[10+1]; /* primary high range */
char prim_code; /* primary even odd code */
char sec_name[40+1]; /* bldg or firm name */
char unit[4+1]; /* secondary abbreviation */
char sec_low[8+1]; /* secondary low range */
char sec_high[8+1]; /* secondary high range */
char sec_code; /* secondary even odd code */
char addon_low[4+1]; /* add on low */
char addon_high[4+1]; /* add on high */
char base_alt_code; /* base alternate code */
char lacs_status; /* LACS converted status */
char finance[6+1]; /* finance code */
char state_abbrev[2+1]; /* state abbreviation (not filled) */
char county_no[3+1]; /* county number */
char congress_dist[2+1]; /* congressional district */
char municipality[6+1]; /* municip. city/state key (not filled) */
char urbanization[6+1]; /* urb. city/state key */
char last_line[6+1]; /* last line city/state key */

} ADDR_REC;

/* NOTE: The GovtBldgInd (Government Building Indicator) field is not */
/* available in the ADDR_REC structure. */

Appendix A: Interface Definition

Address Matching System API User Guide • August 2011 84

/***/
/* This record describes a city/state record. The record format is the same */
/* as the USPS City State File. Please see the USPS Address Information */
/* Products Technical Guide for information on this record. */
/* NOTE: All ‘char’ array fields contain an extra byte (+1) for the null */
/* terminator. */
/***/
typedef struct
{

char detail_code; /* copyright detail code */
char zip_code[5+1]; /* zip code */
char city_key[6+1]; /* city/state key */
char zip_class_code; /* zip classification code */

 /* blank = non-unique zip */
 /* M=APO/FPO military zip */
 /* P=PO BOX zip */
 /* U=Unique zip */

char city_name[28+1]; /* city/state name */
char city_abbrev[13+1]; /* city/state name abbrev */
char facility_cd; /* facility code */

 /* A=Airport mail facility */
 /* B=Branch */
 /* C=Community post office */
 /* D=Area distrib. center */
 /* E=Sect. center facility */
 /* F=General distrib. center */
 /* G=General mail facility */
 /* K=Bulk mail center */
 /* M=Money order unit */
 /* N=Non-postal name */
 /* community name, */
 /* former postal facility, */
 /* or place name */
 /* P=Post office */
 /* S=Station */
 /* U=Urbanization */

char mailing_name_ind; /* mailing name indicator */
 /* Y=Mailing name */
 /* N=Non-mailing name */

char last_line_num[6+1]; /* preferred last line key */
char last_line_name[28+1]; /* preferred city name */

Appendix A: Interface Definition

Address Matching System API User Guide • August 2011 85

char city_delv_ind; /* city delivery indicator */
 /* Y=Office has city delivery */
 /* carrier routes */
 /* N=Office does not have city */
 /* delivery carrier routes */

 char auto_zone_ind; /* automated zone indicator */
 /* A=CR Sort Rates Apply */
 /* Merge Allowed */
 /* B=CR Sort Rates Apply */
 /* Merge Not Allowed */
 /* C=CR Sort Rates Do Not Apply */
 /* Merge Allowed */
 /* D=CR Sort Rates Do Not Apply */
 /* Merge Not Allowed */

char unique_zip_ind; /* unique zip name indicator */
 /* Y=Unique zip name */
 /* blank=not applicable */
char finance[6+1]; /* finance code */
char state_abbrev[2+1]; /* state abbreviation */
char county_no[3+1]; /* county number */
char county_name[25+1]; /* county name */

} CITY_REC;

/***/
/* Parameter list for z4adrinq() and z4xrfinq() calls. Reserved fields are */
/* for future use, do not access these fields. Size of this record can not */
/* be changed. */
/* NOTE: Only fields containing +1 in the length are null terminated. */
/***/
typedef struct
{

 /*********input data*****************/
char rsvd0[4]; /* reserve fore future use */
char iadl1[50+1]; /* input delivery address */
char iadl2[50+1]; /* input firm name */
char ictyi[50+1]; /* input city */
char istai[2+1]; /* input state */
char izipc[10+1]; /* input ZIP+4 code */
char iprurb[28+1]; /* input urbanization name */
char iad13[50+1]; /* input second address line */
char iddpv11[12+1]; /* reserved for future use */
char rsvd1[85]; /* reserved for future use */

 /**********returned data ************/
char dadl3[50+1]; /* standardized 2nd delivery address*/
char dadl1[50+1]; /* standardized delivery address */
char dadl2[50+1]; /* standardized firm name */
char dlast[50+1]; /* standardized city/state/zip */
char dprurb[28+1]; /* output PR urbanization name */

 char dctys[28+1]; /* main post office city */
char dstas[2+1]; /* main post office state */
char dctya[28+1]; /* standardized city */
char abcty[13+1]; /* standardized city abbreviation */
char dstaa[2+1]; /* standardized state */
char zipc[5+1]; /* 5-digit zip code */
char addon[4+1]; /* ZIP+4 addon code */
char dpbc[3+1]; /* delivery point bar code */
char cris[4+1]; /* carrier route */
char county[3+1]; /* FIPS county code */
short respn; /* number of returned responses */
char retcc; /* return code */
char adrkey[12]; /* address key (for indexing) */
char auto_zone_ind; /* A, B, C or D */
char elot_num[4+1]; /* eLOT Number */

Appendix A: Interface Definition

Address Matching System API User Guide • August 2011 86

char elot_code; /* eLOT Ascending/Descending Flag */
char llk_rc[2+1]; /* LACS Link Return Code */
char llk_ind; /* LACS Link Indicator */
char misc[128+1]; /* line for unused input data */
char rsvd2[20]; /* Reserved for Future Use */

 /********* parsed input data*********/
char ppnum[10+1]; /* Primary Number */
char psnum[8+1]; /* Secondary Number */
char prote[3+1]; /* Rural Route Number */
char punit[4+1]; /* Secondary Number Unit */
char ppre1[2+1]; /* First or Left Pre-direction */
char ppre2[2+1]; /* Second or Right Pre-direction */
char psuf1[4+1]; /* First or Left Suffix */
char psuf2[4+1]; /* Second or Right Suffix */
char ppst1[2+1]; /* First or Left Post-direction */
char ppst2[2+1]; /* Second or Right Post-direction */
char ppnam[28+1]; /* Primary Name */
char mpnum[10+1]; /* Matched primary number. */
char msnum[8+1]; /* Matched secondary number */
char pmb[3+1]; /* PMB Unit Designator */
char pmbnum[8+1]; /* PMB Number */
char mlevl; /* Reserved Use */

char footnotes[32+1]; /* Reserved for Future Use */
char stelnkfoot[3+1]; /* suite link footnote */
char punit2[4+1]; /* second or right Secondary Unit */
char psnum2[8+1]; /* second or right secondary number */
char rsvd3[10]; /* Reserved for future use */

struct { /*************** footnotes***********/
char a; /* zip corrected */
char b; /* city/state corrected */
char c; /* invalid city/state/zip */
char d; /* no zip assigned */
char e; /* ZIP assigned for mult response */
char f; /* no zip available */
char g; /* part of firm moved to address */

Appendix A: Interface Definition

Address Matching System API User Guide • August 2011 87

char h; /* secondary number missing */
char i; /* insufficient/incorrect data */
char j; /* dual input */
char k; /* reserved for future use” */
char l; /* del addr component add/del/chg */
char m; /* street name spelling changed */
char n; /* delivery addr was standardized */
char o; /* multi break tie with lowest +4 */
char p; /* better delivery addr exists */
char q; /* Unique ZIP Code */
char r; /* no match caused by EWS */
char s; /* invalid secondary number */
char t; /* magnet street */
char u; /* unofficial PO name */
char v; /* unverifiable city/state */
char w; /* small town default */
char x; /* unique ZIP Code generated */
char y; /* Military Match */
char z; /* ZIP Move Match */
char f0; /* reserved for future use */
char f1; /* reserved for future use */
char f2; /* reserved for future use */
char f3; /* reserved for future use */
char f4; /* reserved for future use */
char f5; /* reserved for future use */
} foot;

ADDR_REC stack[10]; /************record stack************/
char rsvd4[194]; /* reserved for future use */

} ZIP4_PARM;

/**/
/* Parameter list for z4getzip() */
/* NOTE: Only fields containing +1 in the length are null terminated. */
/**/
typedef struct
{

char input_cityst[50+1];
char output_cityst[50+1];
char low_zipcode[5+1];
char high_zipcode[5+1];
char finance_num[6+1];

} GET_ZIPCODE_STRUCT;

Appendix A: Interface Definition

Address Matching System API User Guide • August 2011 88

/**/
/* ABBREVIATED STREET RECORD */
/* */
/* Parameter list for z4ABSQuerySTD() */
/* NOTE: Fields names with a leading "sz" are null terminated. */
/* */
/**/
typedef struct tagNationalDirectoryFileZip4DetailAbbreviated
{
 char psDetailCode[1]; /* COPYRIGHT DETAIL CODE */
 char szZipcode[6]; /* ZIP CODE */
 char szUpdateKey[11]; /* UPDATE KEY NUMBER */
 char psActionCode[1]; /* ACTION CODE */
 char psRecordType[1]; /* RECORD TYPE */
 char szCarrierRt[5]; /* CARRIER ROUTE */
 char szPreDir[3]; /* PRE-DIRECTIONAL ABBREVIATED */
 char szStreetName[29]; /* STREET NAME */
 char szSuffix[5]; /* SUFFIX ABBREVIATED */
 char szPostDir[3]; /* POST-DIRECTIONAL ABBREVIATED */
 char szPrimaryL[11]; /* PRIMARY LOW RANGE */
 char szPrimaryH[11]; /* PRIMARY HIGH RANGE */
 char psPrimarCode[1]; /* EVEN/ODD/BOTH CODE (PRIMARY NUMBER) */
 char szFirm[41]; /* BUILDING/FIRM NAME */
 char szUnit[5]; /* UNIT DESIGNATOR ABBREVIATED */
 char szSecondaryL[9]; /* SECONDARY LOW RANGE */
 char szSecondaryH[9]; /* SECONDARY HIGH RANGE */
 char psSecondaryCode[1]; /* EVEN/ODD/BOTH CODE (SECONDARY NUMBER) */
 char szAddonL[5]; /* ADD ON LOW RANGE */
 char szAddonH[5]; /* ADD ON HIGH RANGE */
 char psBaseAltCode[1]; /* BASE/ALTERNATE CODE */
 char psLACS[1]; /* LACS CONVERTED STATUS */
 char szFinance[7]; /* FINANCE NUMBER */
 char szState[3]; /* STATE ABBREVIATED (NOT FILLED) */
 char szCountyNumber[4]; /* COUNTY NUMBER */
 char szCongressDist[3]; /* CONGRESSIONAL DISTRICT */
 char szMunicipality[7]; /* MUNICIPALITY CITY/STATE KEY (NOT FILLED) */
 char szUrbanization[7]; /* URBANIZATION CITY/STATE KEY */
 char szLastLineKey[7]; /* LAST LINE CITY/STATE KEY */
 char szAddress[51]; /* STANDARDIZED DELIVERY ADDRESS */
} TAbbrSt, *TPAbbrSt;

/***/
/* Error Codes for the iErrorCode variable inside the Z4_ERROR structure */
/***/
#define ERROR_FILE_OPEN 1 /* Error opening a file */
#define ERROR_FILE_READ 2 /* Error reading a file */
#define ERROR_FILE_WRITE 3 /* Error writing to a file */
#define ERROR_FILE_FIND 4 /* Error finding a file */
#define ERROR_FILE_EXPIRE 5 /* AMS library has expired */
#define ERROR_FILE_SYNC 6 /* AMS Database files out of sync */
#define ERROR_SECURITY 7 /* AMS Security Error */

Appendix A: Interface Definition

Address Matching System API User Guide • August 2011 89

#define FILE_ID_CONFIG 1 /* Configuration File */
#define FILE_ID_ZADRFLE 2 /* zadrfle.dat */
#define FILE_ID_ZADRFLENDX 3 /* zadrfle.idx */
#define FILE_ID_CTYSTATE 4
#define FILE_ID_CTYSTATENDX 5
#define FILE_ID_ZIP5FLE 6
#define FILE_ID_ZIP5FLENDX 7
#define FILE_ID_ZXREFDTL 8
#define FILE_ID_ELTRVFLE 9
#define FILE_ID_ELTRVFLENDX 10
#define FILE_ID_EWS 11
#define FILE_ID_SYSTEM 12
#define FILE_ID_LIBRARY 13
#define FILE_ID_KEYMANLIB 14
#define FILE_ID_DATABASE 15
#define FILE_ID_LLK 16
#define FILE_ID_DPV 17
#define FILE_ID_FNSN 18
#define FILE_ID_STELNK 19
#define FILE_ID_ABBRST 20

/***/
/* Parameter list for z4geterror() */
/* NOTE: Only fields containing +1 in the length are null terminated */
/***/
typedef struct
{

int iErrorcode; /* Error Code */
char strErrorMessage[100+1]; /* Error Message */
int iFileCode; /* File Code */
char strFileName[26+1]; /* File Name */
char strDiagnostics[300+1]; /* Diagnostic Message */

} Z4_ERROR;

/**/
/* Paramter list for z4getenv() */
/* NOTE: Only fields containing +1 in length are null terminated */
/**/
typedef struct
{

char strConfigFile[300+1];
char address1[300+1]; /*Contains the full path of the ZADRFLE.DAT file */
char addrindex[300+1]; /*Contains the full path of the ZADRFLE.NDX file */
char cdrom[300+1]; /*Contains the drive letter of the CD-ROM drive that*/
 /*Contains the ZIP+4/carrier route data;may be blank*/
char citystate[300+1]; /*Contains the full path of the following files: */
 /*CTYSTATE.DAT - CITYSTATE.NDX */
 /*ZIP5FLE.DAT - ZIP5FLE.NDX */
char crossref[300+1]; /*Contains full path of the ZXREFDTL.DAT file */
char system[300+1]; /*Contains the full path of the Z4CXLOG.DAT file */
char elot[300+1]; /*Contains the full path of the eltrvfle.dat file */
char elotindex[300=1]; /*Contains the full path of the eltrvfle.ndx file */
char llkpath[300+1] /*Contains the full path of the LACS Link files */
char ewspath[300+1]; /*Contains the full path of the ews.txt file */
char fnsnpath[300+1]; /*Contains the full path of the fnsn.* files */
char stelnkpath[300+1]; /* Path to STELNK.* files */
char abrstpath[300+1]; /* Path to ABBRST.* files */
char rsvd1[1208]; /* reserved for future use */
char stelnkflag; /* STELNK flag (Y enables else disabled) */
char abrstflag; /* ABBRST flag (Y enables else disabled) */
char ewsflag /* EWS flag (Y enables else disabled) */
char elotflag; /* eLot flag (Y enables else disabled) */
char llkflag; /* LACS Link flag (Y enables else disabled) */
char dpvflag; /* DPV flag (Y enables else disabled) */

Appendix A: Interface Definition

Address Matching System API User Guide • August 2011 90

}Z4_ENV;

Appendix A: Interface Definition

Address Matching System API User Guide • August 2011 91

/**/
/* Parameter list for z4opencfg() */
/* NOTE: Only fields containing +1 in the length are null terminated. */
/**/
/* Use of this structure will replace a physical copy of the configuration */
/* file on the hard drive */

typedef struct
{

char *address1; /*Contains the full path of the ZADRFLE.DAT file */
char *addrindex; /*Contains the full path of the ZADRFLE.NDX file */
char *cdrom; /*Contains the drive letter of the CD-ROM drive that*/
 /*contains the ZIP+4/carrier route data;may be blank*/
char *citystate; /*Contains the full path of the following files: */
 /*CTYSTATE.DAT - CTYSTATE.NDX */
 /*ZIP5FILE.DAT - ZIP5FLE.NDX */
char *crossref; /*Contains the full path of the ZXREFDTL.DAT file */
char *system; /*Contains the full path of the Z4CXLOG.DAT file */
char *elot; /*Contains the full path of the ELTRVFLE.DAT file */
char *elotindex; /*Contains the full path of the ELTRVFLE.ND file */
char *llkpath; /*Contains the full path of the LACS Link files */
char *ewspath; /*Contains the full path of the EWS.TXT file */
char *dpvpath /*Contains the full path of the dpv files */
char *fnsnpath; /*Contains the full path of the fnsn.* files */
char* stelnkpath; /* Path to the suite link files */
char* abrstpath; /* Path to the abbreviated street name files */
char rsvd[116]; /* reserved for future use */

}CONFIG_PARM;

typedef struct
{
 char rsvd1[50]; /*reserved for future use */
 short status; /*1 - Used value point to by fname */
 /*2 - Used values in CONFIG_PARM */
 /*9 - No values found. Search for z4config.dat */
 char *fname; /*pointer to a NULL terminated string that */
 /*contains the full path and filename for a custom */
 /*config file. If fname contains a leading space */
 /*or NULL then it is ignored and the CONFIG_PARM */
 /*is evaluated for path names */
 CONFIG_PARM config;/*Contains the path name for the config file */
 char ewsflag; /*Y Enabled EWS else Disable EWS
 char elotflag; /*Y Enables LOT else Disable eLOT */
 char llkflag; /*Y Enables LACS Link else disable LACS Link */
 char dpvflag; /*Y Enables DPV else disable DPV */
 char systemflag; /*Indicates open option */
 char rtsw[15+1]; /* Internal use */
 char dpvtypeflag; /* Future use */
 char stelnkflag; /* Y Enables STELNK else Disable STELNK */
 char abrstflag; /* Y Enables ABRST else Disable ABRST */
 char rsvd2[492]; /* reserved for future use */
}Z4OPEN_PARM

Appendix A: Interface Definition

Address Matching System API User Guide • August 2011 92

/**/
/*Z4OPEN_PARM.status values for z4opencfg() */
/**/

#define Z4_FNAME 1 /* Used the value in fname as the path and filename */
#define Z4_CONFIG 2 /* Used the paths in the CONFIG_PARM structure */
#define Z4_SEARCH 9 /* Used neither, searched for z4config.dat */

/**/
/* Return Codes for z4adrinq() and z4xrfinq() calls */
/**/
#define Z4_INVADDR 10 /* invalid address */
#define Z4_INVZIP 11 /* invalid ZIP Code */
#define Z4_INVSTATE 12 /* invalid state code */
#define Z4_INVCITY 13 /* invalid city */
#define Z4_NOTFND 21 /* address not found */
#define Z4_MULTIPLE 22 /* multiple response - no default */
#define Z4_SINGLE 31 /* single response - exact match */
#define Z4_DEFAULT 32 /* default response */

/***/
/* Function prototypes for the ZIP+4 retrieval engine. */
/***/
#if defined(OS2_32)
#define Z4FUNC
#elif defined(WIN32)
#define Z4FUNC _cdecl
#elif defined(_WINDOWS) || defined(_WINDLL)
#define Z4FUNC __far __pascal __export
#elif defined(OS2)
#define Z4FUNC _far _pascal _loadds _export
#elif defined(_MAC)
#define Z4FUNC
#elif defined(ANSI_STRICT) || defined(UNIX) || defined(I370)
#define Z4FUNC
#else
#define Z4FUNC _cdecl
#endif

int Z4FUNC z4remove(void); /* terminate the retrieval engine */
int Z4FUNC z4open(void); /* open the retrieval engine for use */
int Z4FUNC z4opencfg(Z4OPEN_PARM *);/*open with custom parameters */
int Z4FUNC z4close(void); /* close the retrieval engine */
int Z4FUNC z4abort(void); /* abort the current inquiry */
int Z4FUNC z4adrinq(ZIP4_PARM *); /* address inquiry */
int Z4FUNC z4scroll(ZIP4_PARM *); /* address inquiry */
int Z4FUNC z4adrkey(ZIP4_PARM *); /* address key (for indexing) */
int Z4FUNC z4xrfinq(ZIP4_PARM *); /* nine digit cross reference inquiry */
int Z4FUNC z4xrfinq11(ZIP4_PARM*);/* eleven digit cross reference inquiry */
int Z4FUNC z4adrstd(ZIP4_PARM *, int); /* address standardization */

Appendix A: Interface Definition

Address Matching System API User Guide • August 2011 93

int Z4FUNC z4ctyget(CITY_REC *, void *);/* get first city for a state */
int Z4FUNC z4ctynxt(CITY_REC *); /* get next city for a state */
int Z4FUNC z4adrget(ADDR_REC *, void *);/* get first address for a fin. no */
int Z4FUNC z4adrnxt(ADDR_REC *); /* get next address for a fin. no */
int Z4FUNC z4adrprv(ADDR_REC *); /* get previous addrss for a fin. no*/
int Z4FUNC z4date(char *); /* get date of ZIP+4 database */
int Z4FUNC z4GetDataExpireDays(void); /* number of days until data expire */
int Z4FUNC z4GetCodeExpireDays(void); /* number of days until code expire */
int Z4FUNC z4expire(void); /* Deprecated. Use GetDataExpireDays() */
int Z4FUNC z4getzip(GET_ZIPCODE_STRUCT*);/* get zip code range for cityst */
int Z4FUNC z4ver(char *); /* get the version of the API code */
int Z4FUNC z4geterror(Z4_ERROR *); /* get the last error msg and code */
int Z4FUNC z4getenv(Z4_ENV *); /* get the environment for AMS */
int Z4FUNC z4lline(ZIP4_PARM *, char *);/* Validate Last Line */
const char* Z4FUNC z4LLkGetKey(void);
int Z4FUNC z4LLkIsDisabled(void);
int Z4FUNC z4LLkSetKey(const char* szKey);

const char* Z4FUNC z4SLNKGetDate(int); /* Gets date associated with a table */
long Z4FUNC z4SLNKGetError(void); /* Suite Link error code */
const char* Z4FUNC z4SLNKGetErrorMsg(void);/* Suite Link error message */
int Z4FUNC z4SLNKQuery(ZIP4_PARM*);/* Performs a Suite Link lookup */
int Z4FUNC z4ABSQuery(ZIP4_PARM*, TAbbrSt*); /* Performs abbreviated

street address lookup */

#endif /* ZIP4_H */

Appendix B: GDEV Application

Appendix B: GDEV Application

GDEV is a GUI Windows application that provides the capability to unencrypt any of the developer kits from the
AMS disc.

This application is located on the AMS disc in the dev_kits sub-directory. (gdev.exe)

If GDEV is launched directly from the disc it will automatically load information from that disc. Otherwise, GDEV
will not display any information and you will have to manually select a DEV_KITS directory.

1. Select “File->Select DEV_KIT directory” to tell GDEV where the developer kits are located.
2. Select the “Platform” that you want to unencrypt.
3. Select the file(s) that you want to unencrypt.
4. Enter your customer ID.
5. Enter or Select the directory where the unencrypted files should be placed.
6. Click the [Extract] button.

Note: If the “Destination Directory” already contains the selected files then you must also select the “Overwrite
Existing Files” checkbox or the unencryption process will fail.

Address Matching System API User Guide • August 2011 94

Appendix C: DPV®

Address Matching System API User Guide • August 2011 95

Appendix C: DPV®

The United States Postal Service® (USPS®) has developed a new technology product that will help mailers validate
the accuracy of their address information, right down to the physical delivery point. Mailers will be able to identify
individual addresses within a mailing list that are potentially undeliverable-as-addressed due to an addressing
deficiency. This new technology is now available through the current address matching API. Following is a layout
and example usage of the DPV®/DSF2® interface made available through the address matching API.

Error Values

Constants used to identify errors returned from z4DpvSetPath ():

#define ERROR_INVALID_AMS_STATUS -1
#define ERROR_INVALID_DPV_HNDL -2
#define ERROR_UNKNOWN_DPV_ID -4
#define ERROR_LD_LIBRARY_FAIL -5
#define ERROR_OPEN_DPVTBL_FAIL -6
#define ERROR_INVALID_MATCH_LVL -7

Error Codes

Constants used to identify dpv errors returned from z4GetLastErrorCode ():

#define SUCCESSFUL_DPV 0 (NO ERROR)
#define UNDEFINED_DPV 1 (UNKNOWN ERROR)
#define INVALID_HND_DPV 2 (INVALID HANDLE)
#define INVALID_ID_DPV 3 (UNKNOWN ID FOR THE OPERATION)
#define NULL_VALUE_DPV 4 (ENCOUNTER A NULL VALUE)
#define ACCESS_DENIED_DPV 5 (ACCESS ATTEMPT ON DEVICE DENIED)
#define OPEN_FAILED_DPV 6 (OPEN ATTEMPT ON DEVICE FAILED)
#define READ_FAILED_DPV 7 (READ ATTEMPT ON DEVICE FAILED)
#define WRITE_FAILED_DPV 8 (WRITE ATTEMPT TO DEVICE FAILED)
#define SEEK_FAILED_DPV 9 (SEEK ATTEMPT ON DEVICE FAILED)
#define UNAVAILABLE_DATA_DPV 10 (MISSING DATA NEEDED FOR OPERATION)
#define LOW_MEMORY_DPV 11 (CAN NOT ALLOCATE ENOUGH MEMORY)
#define EXPIRATION_DPV 12 (DATA AND LIBRARY ARE NOT COMPATIBLE)
#define SYNCHRONIZE_DPV 13 (DPV DATABASE TABLES NOT SYNCHRONIZED)
#define LIST_DPV 14 (DETECTED ADDRESS LIST CREATION)
#define ENV_DPV 100 (FAILED TO ALLOCATE INITIAL ENVIRONMENT)
#define INSYNCH_DPV 101 (AMS AND DPV TABLES NOT SYNCHRONIZED)
#define LIB_COMPAT_DPV 102 (FOUND AN INCOMPATIBLE DPV LIBRARY)
#define LIB_LOAD_DPV 103 (FAILED TO LOAD DPV LIBRARY)
#define SECURITY_KEY_DPV 104 (VIOLATION - SECURITY KEY GENERATED)
#define CONFIGURED_DPV 105 (MISSING DATA TABLE(S))

Appendix C: DPV®

Address Matching System API User Guide • August 2011 96

Database Tables

Below is a description of the tables used by DPV®:

dphe.hsa - contains all delivery points (required).
dphe.hsb - contains business delivery points (DSF2).
dphe.hsc - contains CMRA delivery points.
dphe.hsd - contains drop site delivery points (DSF2).
dphe.hsf - corrects errors in the dphe.hsa table (required).
dphe.hst - contains throwback delivery points (DSF2).
dphe.hss - contains seasonal delivery points (DSF2).
dphe.hsv - contains vacant delivery points.
dphe.hsl - contains lacs delivery points (DSF2).
dphe.hsk - contains drop counts for HSC and HSD tables (DSF2).
dphe.hs1 - contains curb delivery type delivery points (DSF2).
dphe.hs2 - contains NDCBU delivery type delivery points (DSF2).
dphe.hs3 - contains centralized delivery type delivery points (DSF2).
dphe.hs4 - contains other/doorslot delivery type delivery points (DSF2).
dphe.hsx - contains nostat delivery points.
lcd - resolves ZIP-codes to a common base ZIP-code (required).
lcd.nxd - used to maximize the performance of the lcd table (required).

Constants used to identify the above tables:

#define HSA_DPV 0 (dphe.hsa)
#define HSB_DPV 1 (dphe.hsb)
#define HSC_DPV 2 (dphe.hsc)
#define HSD_DPV 3 (dphe.hsd)
#define HSF_DPV 4 (dphe.hsf)
#define HST_DPV 5 (dphe.hst)
#define HSS_DPV 6 (dphe.hss)
#define HSV_DPV 7 (dphe.hsv)
#define HSL_DPV 8 (dphe.hsl)
#define HSK_DPV 9 (dphe.hsk)
#define HS1_DPV 10 (dphe.hs1)
#define HS2_DPV 11 (dphe.hs2)
#define HS3_DPV 12 (dphe.hs3)
#define HS4_DPV 13 (dphe.hs4)
#define HSX_DPV 14 (dphe.hsx)
#define LCDNDX_DPV 16 (lcd.ndx)
#define LCDFILE_DPV 17 (lcd)

Database Table Options

Constants used to identify table options for z4DpvIsOptions() and z4DpvSetOptions():

#define RAMLOAD_DPV 8 (Load table into RAM)

Appendix C: DPV®

Address Matching System API User Guide • August 2011 97

Data Types

typedef struct tagDeliveryPointValidationParameter
{
 char szAddress [51 + 1]; /* DELIVERY ADDRESS LINE (OPTIONAL) */
 char szPrimary [10 + 1]; /* PRIMARY NUMBER */
 char szUnit [4 + 1]; /* UNIT DESIGNATOR */
 char szSecondary[8 + 1]; /* SECONARY NUMBER */
 char szZip5 [5 + 1]; /* 5 DIGIT ZIPCODE */
 char szZip4 [4 + 1]; /* 4 DIGIT ADDON */
 char szPMB [8 + 1]; /* PRIVATE MAIL BOX NUMBER */
 char szRecType [1 + 1]; /* RECORD TYPE (F,H,P,R,S,G) */
 char szMilitary [1 + 1]; /* Y = Military */
 char szUnique [1 + 1]; /* Y = Unique */
 char szRetCode [1 + 1]; /* AMS RETURN CODE (BINARY FIELD) */
 /* 32 DEFAULT RESPONSE */
 /* 31 EXACT MATCH */
 /* 22 MULTIPLE RESPONSE */
 /* 21 ADDRESS NOT FOUND */
 /* 13 INVALID CITY */
 /* 12 INVALID STATE */
 /* 11 INVALID ZIP CODE */
 /* 10 INVALID ADDRESS */
} TDPVParm, *TPDPVParm;

Appendix C: DPV®

Address Matching System API User Guide • August 2011 98

Interface Overview

Interface: int Z4FUNC z4Dpv(TDPVParm* pDPV)
Description: Provides a means of performing a DPV lookup without performing an address lookup.
Input: TDPVParm structure that identifies the address to perform the DPV query on
Output: integer with one of the following character values
 'Y' - Confirmed entire address
 'N' - Could not confirm address
 'S' - Confirmed address by dropping secondary information

'D' - Confirmed a hirise or box type address w/o secondary information
' ' - Address was not submitted for confirmation

Note: One of these values is always returned.
The same DPV calls you would normally make after z4adrinq() can be made after z4Dpv().

Interface: int z4DpvGetCode(int iTableID)
Description: Provides the status of a lookup.
Input: integer identifying database table
Output: integer with one of the following character values
 'Y' - Confirmed entire address
 'N' - Could not confirm address
 'S' - Confirmed address by dropping secondary information

'D' - Confirmed a hirise or box type address w/o secondary information
' ' - Address was not submitted for confirmation

Note: One of these values is always returned.

Interface: int z4DpvGetDlvryType(void)
Description: Provides the delivery type of a lookup.
Input: none
Output: integer with one of the following character values
 '1' - Curb delivery type
 '2' - NDCBU delivery type
 '3' - Centralized delivery type
 '4' - Other/doorslot delivery type
 ' ' - Address was not submitted for a delivery type lookup
Note: One of the above values is always returned. This is a DSF2 interface call and is associated with the

HS1_DPV, HS2_DPV, HS3_DPV, and HS4_DPV tables.

Interface: const char* z4DpvGetDate(void)
Description: Identifies the database used by DPV.
Input: none
Output: null terminated string formatted as MMDDYYYY
Note: The date string is null terminated and always returned unless the zip4/dpv library is not loaded

correctly or the database is not found. The return value is zero/null when the date string is not
returned.

Interface: int z4DpvGetDropCnt(void)
Description: Identifies the drop count associated with a lookup.
Input: none
Output: integer identifying drop count
Note: The drop count returned is only valid when a lookup is a CMRA or a drop site for any

other situation a zero is returned. This is a DSF2 interface call and is associated with the
HSC_DPV, HSD_DPV, and HSK_DPV table.

Appendix C: DPV®

Address Matching System API User Guide • August 2011 99

Interface: const char* z4DpvGetFootnotes(void)
Description: Provides the state of a lookup.
Input: none
Output: null terminated string with a combination of the following character pairs
 "AA" - zip4 matched
 "A1" - zip4 did not match
 "BB" - HSA_DPV confirmed entire address
 "CC" - HSA_DPV confirmed address by dropping secondary information
 "F1" - Military match
 "G1" - General deliver match
 "N1" - HSA_DPV confirmed a hi-rise address w/o secondary information
 "M1" - Primary number missing
 "M3" - Primary number invalid
 "P1" - Box number missing
 "P3" - Box number invalid

"RR" - HSC_DPV confirmed address with PMB information
"R1" - HSC_DPV confirmed address without PMB information
"U1" - Unique ZIP code match

Note: The footnote string is null terminated and always returned unless the zip4/dpv library is not loaded
correctly. The return value is zero/null when the footnote string is not returned.

Interface: const char* z4DpvGetKey (void)
Description: Returns a security key as a result of a stop processing event.
Input: none
Output: null terminated string containing a security key
Note: The security key is a null terminated alphanumeric string. This key is only returned when stop

processing occurs. This security key is used to obtain a second security key that becomes the input
of z4DpvSetKey() which verifies the second security key for validity and enables DPV if valid.

Interface: long z4GetLastErrorCode (void)
Description: Provides the error codes of the last error to occur in DPV.
Input: none
Output: long integer value identifying the last error
Note: This interface returns errors occurring within DPV. If an error occurs within AMS even as a result

of DPV® the error will not show up here. The purpose of this interface is more towards
debugging/logging.

Interface: const char* z4GetLastErrorMsg(void)
Description: Text description of the error code return from z4GetLastErrorCode();
Input: none
Output: null terminated string containing a text description of the last error
Note: This is a null terminated ASCII string and it may not be formatted enough for user feedback.

Interface: unsigned long z4DpvGetOptions(int iID)
Description: Provides a way to determine the option being used by DPV.
Input: integer identifying database table
Output: unsigned long integer identifying the currently set options for the specified table
Note: Returns the options currently being used for a DPV table.

Interface: const char* z4DpvGetPathname(int iID)
Description: Provides the path and filename of a database table
Input: integer identifying database table
Output: null terminated string indicating path and filename of database table

Appendix C: DPV®

Address Matching System API User Guide • August 2011 100

Interface: const char* z4DpvGetVersion(void)
Description: Identifies DPV® library version.
Input: none
Output: null terminated string formatted as Major.Minor.Micro.CassCycle
Note: The alphanumeric version string (e.g. "3.01.01.G") is null terminated and always returned unless

the zip4/dpv library can not be. The return value is zero/null when the version string is not
returned.
Major - Major changes made to interface (not backwards compatible)
Minor - Additions made to interface (backwards compatible)
Micro - Internal changes made to library (backwards compatible)
Cass Cycle - Only used for identification purposes

Interface: int z4DpvIsConfirmed(int iTableID)
Description: Identifies the status of a lookup
Input: integer identifying the database table
Output: integer identifying status (TRUE/FALSE)
 TRUE - Confirmed address
 FALSE - Could not confirmed address
Note: FALSE equals zero and TRUE is not equal to zero

Interface: int z4DpvIsDataValid(int iTableID)
Description: Performs a checksum integrity check on database tables.
Input: integer identifying the database table
Output: integer identifying status (TRUE/FALSE)
 TRUE - Good table
 FALSE - Bad table
Note: FALSE equals zero and TRUE is not equal to zero

Interface: int z4DpvIsDisabled(void)
Description: Identifies the status of the DPV library
Input: none
Output: integer identifying status (TRUE/FALSE)
 TRUE - Disable
 FALSE - Enable
Note: FALSE equals zero and TRUE is not equal to zero

Interface: int z4DpvIsDisabledEx(int bDPV)
Description: Identifies the status of the DPV/DSF2 library
Input: integer identifying library type (TRUE/FALSE)
 TRUE - DPV®
 FALSE - DSF2®
Output: integer identifying status (TRUE/FALSE)
 TRUE - Disable
 FALSE - Enable
Note: FALSE equals zero and TRUE is not equal to zero

Interface: int z4DpvIsOptions(int iID, unsigned long iOption)
Description: Identifies option(s) currently inuse by DPV
Input: integer identifying database table
 integer identifying option(s) to check for
Output: integer identifying state (TRUE/FALSE)
 TRUE - Option(s) used
 FALSE - Option(s) not used
Note: FALSE equals zero and TRUE is not equal to zero. This call is only effective when used after an

AMS api open call.

Appendix C: DPV®

Address Matching System API User Guide • August 2011 101

Interface: int z4DpvResolveMultiResp(ZIP4_PARM* ext)
Description: Attempts to resolve an address with a multiple response into a single response
Input: pointer to a ZIP4_PARM structure with a multiple response result
Output: integer identifying status (TRUE/FALSE)
 TRUE - Resolved
 FALSE - Unresolved
Note: When an address lookup results in a multiple response call this interface to break the tie. This call

is only effective after a z4adrinq call.

Interface: int z4DpvSetKey(const char* szKey)
Description: Accepts the security key used to enable DPV® after stop processing occurrs
Input: null terminate string containg a security key
Output: integer identifying the DPV® library status (TRUE/FALSE)
 TRUE - Enabled
 FALSE - Disabled
Note: The input security key is a key obtain as a result of providing the security key from

z4DpvSetKey() to some customer care/tech support rep. Any formating characters should be
removed from the security key before calling this interface. DPV® will be enabled if the security
key is valid. This call is only effective when used after an AMS api open call.

Interface: void z4DpvSetOptions(int iID, unsigned long iOption)
Description: Provides control over the functionality of database tables
Input: integer identifying database table
 integer identifying option(s)
Output: none
Note: Options are only a suggestion. For example, if the option to load a table into RAM is set

the table is only loaded if there is enough memory. This call is only effective when used before an
AMS api open call.

Interface: int z4DpvSetPath(int iTableID, char* pszPathname)
Description: Updates the path and filename of a database table
Input: integer identifying database table
 null terminated string indicating path and filename of database table
Output: integer value indicating the error status
 0 - Success (found and opened table)

-1 - AMS is already open.
-2 - Failed creating DPV® environment
-3 - Internally failed to load DPV® interface
-4 - User specified an invalid TableID
-5 - Failed to load DPV® library
-6 - Failed to open table

Note: This call must occur before any AMS api open call.

Appendix C: DPV®

Address Matching System API User Guide • August 2011 102

Notes

 The DPV® interface is provided via the AMS API library. When building a DPV® application link only to the

AMS API library and not to the DPV® library. An example of a C/C++ compile for the linux platform is listed
below:
cc -o sample.exe sample.o zip4_lnx.dll

 You can not check individual delivery type tables. The delivery type tables function as a single table. When an
ID for a delivery type table is used for a DPV® lookup each delivery type table is checked until one confirms.

 In order to reset errors z4close() must be called or if the error is corrected when a DPV® lookup is made
the error will be reset.

 Whenever an attempt is made to open the AMS API library, a call to z4close() must be made in order to
release allocated resources. If the AMS API library fails to open you must still call z4close().

 When using DPV® it is possible for z4opencfg() to return values 4 or 5.
4 = AMS and DPV data tables are not within the same month. (Out of Sync error)
5 = A security violation has been detected. This occurs when AMS/DPV needs a security key or a DPV®
library can not be found. If an error code 5 is returned and z4DpvGetKey() does not return a security code
then a DPV® library is missing.

Appendix C: DPV®

Address Matching System API User Guide • August 2011 103

DPV® Sample

/***\
* INCLUDES
*
***/
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <memory.h>
#include <string.h>
#include "zip4.h"
#include "z4dpv.h"

/**\
* MACROS
*
**/
#if !defined(SAFE_STR)
#define SAFE_STR(_String_) ((_String_) ? (_String_) : "")
#endif /* #if !defined(SAFE_STR) */

/**\
* DATA TYPES
*
**/
typedef struct tagTableInformation
{
 char* szName;
 char* szDescr;
 long iID;
 int bUsed;
 int bQuery;
} TTableInfo, *TPTableInfo;

/**\
* GLOBALS
*
**/
static TTableInfo g_pTableInfo[] =
{
 {"HSA", "Delivery point", HSA_DPV, 0, 1},
 {"HSB", "Business delivery point", HSB_DPV, 0, 1},
 {"HSC", "CMRA delivery point", HSC_DPV, 0, 1},
 {"HSD", "Drop site delivery point", HSD_DPV, 0, 1},
 {"HSF", "False positive table", HSF_DPV, 0, 1},
 {"HST", "Throwback delivery point", HST_DPV, 0, 1},
 {"HSS", "Seasonal delivery point", HSS_DPV, 0, 1},
 {"HSV", "Vacant delivery point", HSV_DPV, 0, 1},
 {"HSL", "LACS delivery point", HSL_DPV, 0, 1},
 {"HSK", "Drop count", HSK_DPV, 0, 1},
 {"HS1", "Delivery type delivery point",HS1_DPV, 0, 1},
 {"HS2", "Delivery type delivery point",HS2_DPV, 0, 0},
 {"HS3", "Delivery type delivery point",HS3_DPV, 0, 0},
 {"HS4", "Delivery type delivery point",HS4_DPV, 0, 0},
 {"HSX", "Nostat delivery point", HSX_DPV, 0, 1},
 {"LCD", "LCD table", LCDFILE_DPV,0, 0},
 {"LCD NDX", "LCD index", LCDNDX_DPV,0, 0},

Appendix C: DPV®

Address Matching System API User Guide • August 2011 104

};

static int g_iTableCount = (sizeof(g_pTableInfo) /
sizeof(g_pTableInfo[0]));

/**\
* PRIVATE INTERFACE
*
**/
static char* GetInput(const char* szMessage, char* szResponse, int iSize);
static void DisplayResults(ZIP4_PARM* pZip4Parm);
static void ReportStatus(int iRetCode);
static void Shutdown(int iRetCode);

/**\
* Description: Program entry point
* Input: none
* Globals: TTableInfo* - g_pTableInfo (table info array)
* int - g_iTableCount (table info array count)
* Return: int - error status
**/
int main(void)
{
 Z4OPEN_PARM Z4OpenParm = {{0}, 0};
 ZIP4_PARM Zip4Parm = {{0}, {0}};
 char szPathAMS[1024] = {0};
 char szPathDPV[1024] = {0};
 char szPathSecure[1024] = {0};
 char szResp[100] = {0};
 int iRetCode = 0;
 int iIndex = 0;
 /* DISPLAY BANNER */
 printf("\n--");
 printf("\n| USPS AMS/DPV API |");
 printf("\n| Sample Application |");
 printf("\n| |");
 printf("\n--");

 /* SETUP DPV BEFORE Z4OPEN CALL */
 GetInput("\n\nLocation of DPV data files (Include ending slash): ",
 szPathDPV, sizeof(szPathDPV) - 1);

 Z4OpenParm.dpvflag = 'Y';
 Z4OpenParm.config.dpvpath = szPathDPV;

 /* SETUP AMS BEFORE Z4OPEN CALL */
 GetInput("\nLocation of AMS data files (Include ending slash): ",
 szPathAMS, sizeof(szPathAMS) - 1);

 Z4OpenParm.config.address1 = szPathAMS;
 Z4OpenParm.config.addrindex = szPathAMS;
 Z4OpenParm.config.citystate = szPathAMS;
 Z4OpenParm.config.crossref = szPathAMS;
 Z4OpenParm.config.ewspath = szPathAMS;

 GetInput("\nLocation of security file (Include ending slash): ",
 szPathSecure, sizeof(szPathSecure) - 1);

 Z4OpenParm.config.system = szPathSecure;

 /* OPTIONAL: CHECK FOR ELOT USERS */
 GetInput("\nWould you like to use ELOT (Y for yes, default no)? ",

Appendix C: DPV®

Address Matching System API User Guide • August 2011 105

 szResp, sizeof(szResp)-1);

 if(toupper(szResp[0]) == 'Y')
 {
 Z4OpenParm.elotflag = 'Y';
 Z4OpenParm.config.elot = szPathAMS;
 Z4OpenParm.config.elotindex = szPathAMS;
 }

 /* OPEN AMS/DPV API */
 iRetCode = z4opencfg(&Z4OpenParm);
 if(iRetCode != 0)
 {
 Shutdown(iRetCode);
 return 0;
 }

 /* SEARCH FOR USED TABLES */
 for(iIndex = 0; iIndex < g_iTableCount; iIndex++)
 {
 const char* szPathname = z4DpvGetPathname(g_pTableInfo[iIndex].iID);

 /* THE PATHNAME IS SET FOR USED TABLES */
 g_pTableInfo[iIndex].bUsed = (szPathname && szPathname[0]);
 }
 /* OPTIONAL: CHECK DATABASE INTEGRITY */
 GetInput("\nWould you like to check database integrity (Y for yes,
default no)? ", szResp, sizeof(szResp)-1);

 if(toupper(szResp[0]) == 'Y')
 {
 for(iIndex = 0; iIndex < g_iTableCount; iIndex++)
 {
 /* SKIP UNUSED TABLES */
 if(!g_pTableInfo[iIndex].bUsed)
 continue;

 /* DISPLAY STATUS */
 printf("\n%s table: %s", g_pTableInfo[iIndex].szName,
 z4DpvIsDataValid(g_pTableInfo[iIndex].iID) ? "Y" : "N");
 }
 }

 /* OPTIONAL: CHECK TABLES BEING LOADED INTO RAM */
 if(z4DpvIsOptions(HSC_DPV, RAMLOAD_DPV))
 printf("\n\nCMRA table loaded into RAM.");
 if(z4DpvIsOptions(HSF_DPV, RAMLOAD_DPV))
 printf("\nFALSE table loaded into RAM.");

 /* OPTIONAL: CHECK DATABASE DATE */
 printf("\nDPV date (YYYYMMDD): %s", z4DpvGetDate());

 /* OPTIONAL: CHECK VERSION */
 printf("\nDPV version: %s", z4DpvGetVersion());

 /* OPTIONAL: CHECK FOR DPV BEING ENABLED */
 if(z4DpvIsDisabled())
 printf("\nDPV is disabled.");
 else
 printf("\nDPV is enabled.");

 /* PROGRAM LOOP */
 do
 {

Appendix C: DPV®

Address Matching System API User Guide • August 2011 106

 printf("\n\n---");
 printf("\n Address Lookup ");
 printf("\n---");

 /* CLEAR LOOKUP INFO */
 memset(&Zip4Parm, 0x00, sizeof(Zip4Parm));

 /* GET USER'S ADDRESS INFO */
 GetInput("\nFirm Name : ", Zip4Parm.iadl2,
sizeof(Zip4Parm.iadl2));
 GetInput("\nDelivery Address Xtra: ", Zip4Parm.iadl3,
sizeof(Zip4Parm.iadl3));
 GetInput("\nDelivery Address : ", Zip4Parm.iadl1,
sizeof(Zip4Parm.iadl1));
 GetInput("\nLast Line : ", Zip4Parm.ictyi,
sizeof(Zip4Parm.ictyi));
 GetInput("\nUrbanization : ", Zip4Parm.iprurb,
sizeof(Zip4Parm.iprurb));
 /* PERFORM LOOKUP */
 z4adrinq(&Zip4Parm);

 /* CHECK FOR STOP PROCESSING */
 if(z4DpvGetLastErrorCode() == LIST_DPV)
 {
 const char* szSecurityCode = z4DpvGetKey();
 char szResp[1024] = {0};

 printf(z4DpvGetLastErrorMsg());

 /* CHECK FOR STOP PROCESSING */
 if(szSecurityCode && *szSecurityCode)
 {
 printf("\nDPV has been disabled.");
 printf("\n\nSecurity code: %s", szSecurityCode);
 printf("\nTo enable DPV contact customer support with the
security");
 printf("\ncode above to recieve the security key you need to
enable DPV");

 GetInput("\nEnter security key w/o formatting
characters: ",
szResp, sizeof(szResp)-1);

 /* INFORM USER IF SUCCESSFUL */
 if(z4DpvSetKey(szResp))
 {
 printf("\nDPV has been enabled");
 }
 }
 }

 /* CHECK FOR RESOLVING MULTIPLE RESPONSES */
 if(Zip4Parm.retcc == Z4_MULTIPLE)
 z4DpvResolveMultiResp(&Zip4Parm);

 /* DISPLAY RESULTS */
 DisplayResults(&Zip4Parm);

 /* CHECK FOR ENDING PROGRAM */
 GetInput("\nTo lookup another address press Y: ", szResp,
sizeof(szResp)-1);
 }while(toupper(szResp[0]) == 'Y');

Appendix C: DPV®

Address Matching System API User Guide • August 2011 107

 /* CLEANUP (CLOSE AMS API) */
 Shutdown(iRetCode);

 return 0;
}

Appendix C: DPV®

Address Matching System API User Guide • August 2011 108

/**\
* Description: Show user the results of a lookup
* Input : ZIP4_PARM* - pointer to ZIP4_PARM record
* Globals: TTableInfo* - g_pTableInfo (table info array)
* int - g_iTableCount (table info array count)
* Return : None
**/
static void DisplayResults(ZIP4_PARM* pZip4Parm)
{
 int iIndex = 0;
 int iTables = 0;

 /* ERROR CHECK */
 if(!pZip4Parm)
 return;

 /* DISPLAY AMS RESULTS */
 printf("\nReturn Code [%i] Stack Records [%i]", pZip4Parm->retcc,
pZip4Parm->respn);
 printf("\nRecord Type : %c", pZip4Parm->stack->rec_type);
 printf("\nFinance : %s", pZip4Parm->stack->finance);
 printf("\nFirm Name : %s", pZip4Parm->dadl2);
 printf("\nDelivery Address Xtra: %s", pZip4Parm->dadl3);
 printf("\nDelivery Address : %s", pZip4Parm->dadl1);
 printf("\nUrbanization : %s", pZip4Parm->dprurb);
 printf("\nLast Line : %s %s %s-%s[%s]",
 pZip4Parm->dctya, pZip4Parm->dstaa, pZip4Parm->zipc,

pZip4Parm->addon, pZip4Parm->dpbc);
 printf("\nCarrier route : %s", pZip4Parm->cris);
 printf("\nLOT Number : %s%c\n", pZip4Parm->elot_num,
pZip4Parm->elot_code);

 /* DISPLAY DPV RESULTS */
 for(iIndex = 0; iIndex < g_iTableCount; iIndex++)
 {
 int bNewLine = ((iTables % 4) == 0);

 /* SKIP NONQUERY TYPE TABLES */
 if(!(g_pTableInfo[iIndex].bUsed && g_pTableInfo[iIndex].bQuery))
 continue;

 /* DISPLAY 4 TABLE STATS PER LINE */
 printf(bNewLine ? "\n" : "");

 /* DISPLAY TABLE STATUS */
 if(bNewLine)
 {
 printf("%s=%c",
 g_pTableInfo[iIndex].szName,
z4DpvGetCode(g_pTableInfo[iIndex].iID));
 }
 else
 {
 printf(" %s=%c",
 g_pTableInfo[iIndex].szName,
z4DpvGetCode(g_pTableInfo[iIndex].iID));
 }

 /* TRACK USED TABLES */
 iTables++;
 }

 printf("\nDelivery type: %c", z4DpvGetDlvryType());
 printf("\nFootnotes: %s", z4DpvGetFootnotes());

Appendix C: DPV®

Address Matching System API User Guide • August 2011 109

 printf("\nDrop count: %li\n", z4DpvGetDropCnt(HSK_DPV));
}

/**\
* Description: Prompts and retrieves a response from the command line
* Input: const char* - Message
* char* - User's response buffer
* int - Size of response buffer
* Return: char* - User's response buffer
**/
static char* GetInput(const char* szMessage, char* szResponse, int iSize)
{
 int iLen = 0;

 /* ERROR CHECK INPUT */
 if(!szResponse)
 return szResponse;

 /* PROMPT USER */
 if(szMessage)
 printf(szMessage);

 /* GET RESPONSE */
 szResponse[0] = 0;
 fgets(szResponse, iSize, stdin);
 fflush(stdin);

 /* REMOVE THE ENTER KEY CHARACTER */
 iLen = strlen(szResponse);
 if(iLen && ((szResponse[iLen - 1] == '\n') || (szResponse[iLen - 1] ==
'\r')))
 szResponse[iLen - 1] = 0;

 /* RETURN THE RESPONSE */
 return szResponse;
}

/**\
* Description: Display diagnostic info about the API
* Input: int - z4open()/z4opencfg() return code
* Globals: TTableInfo* - g_pTableInfo (table info array)
* int - g_iTableCount (table info array count)
* Return: None
**/
static void ReportStatus(int iRetCode)
{
 int iIndex = 0;
 char szVersion[20] = {0};
 char szDate[20] = {0};
 Z4_ERROR ErrorParm = {0};
 Z4_ENV EnvParm = {{0},{0}};

 /* DISPLAY REPORT BANNER */
 printf("\n\n---");
 printf("\n STATUS REPORT ");
 printf("\n--\n");

 /* GET AMS STATUS INFO */
 z4ver(szVersion);
 z4date(szDate);
 z4getenv(&EnvParm);
 z4geterror(&ErrorParm);

Appendix C: DPV®

Address Matching System API User Guide • August 2011 110

 /* DISPLAY AMS STATUS INFO */
 printf("\nAMS version: %s", szVersion);
 printf("\nAMS date (YYYYMMDD): %s", szDate);
 printf("\nz4open() return code: %d", iRetCode);

 printf("\nError Message: %s", ErrorParm.strErrorMessage);
 printf("\nFile Name: %s", ErrorParm.strFileName);
 printf("\nDiagnostics: %s", ErrorParm.strDiagnostics);

 printf("\nConfiguration File: %s", EnvParm.strConfigFile);
 printf("\nAddress1: %s", EnvParm.address1);
 printf("\nAddrIndex: %s", EnvParm.addrindex);
 printf("\nCityState: %s", EnvParm.citystate);
 printf("\nCrossRef: %s", EnvParm.crossref);
 printf("\nSystem: %s", EnvParm.system);
 printf("\neLOT: %s", EnvParm.elot);
 printf("\neLOTIndex: %s", EnvParm.elotindex);
 printf("\nEWS Path: %s", EnvParm.ewspath);
 printf("\neLOT Flag: %c\n", EnvParm.elotflag);

 /* DISPLAY DPV STATUS INFO */
 printf("\nDPV: %s", z4DpvIsDisabled() ? "disabled" :
"enabled");
 printf("\nDPV version: %s", SAFE_STR(z4DpvGetVersion()));
 printf("\nDPV date (YYYYMMDD): %s", SAFE_STR(z4DpvGetDate()));
 printf("\nError Code: %li", z4DpvGetLastErrorCode());
 printf("\nError Message: %s", SAFE_STR(z4DpvGetLastErrorMsg()));

 /* DISPLAY DPV TABLE INFO */
 for(iIndex = 0; iIndex < g_iTableCount; iIndex++)
 {
 /* SKIP UNUSED TABLES */
 if(!g_pTableInfo[iIndex].bUsed)
 continue;

 printf("\n%s: %s", g_pTableInfo[iIndex].szName,
z4DpvGetPathname(g_pTableInfo[iIndex].iID));
 }
}

/**\
* Description: Properly shuts down the AMS/DPV engine
* Input: int - z4open()/z4opencfg() return code
* Return: None
**/
static void Shutdown(int iRetCode)
{
 const char* szSecurityCode = z4DpvGetKey();
 char szResp[1024] = {0};

int iSize = sizeof(szResp) - 1;

 /* CHECK FOR STOP PROCESSING */
 if(szSecurityCode && *szSecurityCode)
 {
 printf("\nDPV has been disabled.");

 printf("\n\nSecurity code: %s", szSecurityCode);
 printf("\nTo enable DPV contact customer support with the
security");
 printf("\ncode above to recieve the security key you need to
enable DPV");

 GetInput("\nEnter security key w/o formatting characters: ",
 szResp, iSize);

Appendix C: DPV®

Address Matching System API User Guide • August 2011 111

 /* INFORM USER IF SUCCESSFUL */
 if(z4DpvSetKey(szResp))
 printf("\nDPV has been enabled");
 }

 /* OPTIONAL: DISPLAY STATUS REPORT */
 GetInput("\nWould you like a status report (Y for yes, default no)? ",
 szResp, iSize);

 if(toupper(szResp[0]) == 'Y')
 ReportStatus(iRetCode);

 /* CLOSE AMS/DPV API */
 if(z4close())
 printf("\n\nError closing USPS AMS API\n");
 else
 printf("\n\nUSPS AMS API is closed\n");
}

	Section 1: Introduction and Overview
	USPS® Address Matching System Developer’s Kit
	Address Matching System Technical Support
	Installation Procedures for Windows (32 Bit)
	Installation Procedures for SUN UNIX (32 Bit)
	Installation Procedures for SUN UNIX (64 Bit)
	Installation Procedures for AIX UNIX
	Installation Procedures for LINUX (32 Bit)
	Installation Procedures for LINUX (64 Bit)

	Section 2: Coding Requirements
	Thread Safety
	Process Safety
	Stop Processing / False Positive Events
	Function Call Order

	Section 3: API Functions
	Open the Address Matching System with Special Parameters
	Address Inquiry
	Address Sort Key
	9-digit Inquiry
	11-digit Inquiry
	Address Standardization
	Close the Address Matching System
	Read City/State File By Key
	Read City/State File Next
	Read ZIP+4 File By Key
	Get ZIP Codes from a City/State
	Terminate Active Address Inquiry
	Get Date of ZIP+4 Database
	Get AMS Data Expiration
	Get AMS Library Expiration
	Multiple Response Stack
	Get Last Error
	Get Environment
	Retrieving the LACSLink® Security Key
	Checking for LACSLink functionality
	Disabling the LACSLink® Security Key
	SUITELINK™ Database Date
	SUITELINK™ Error Code
	SUITELINK™ Error Message
	SUITELINK™ Query
	Abbreviated Street Address Query

	Section 4: Footnote Flags
	Section 5: Record Types
	Section 6: Return Codes
	Appendix A: Interface Definition
	Appendix B: GDEV Application
	Appendix C: DPV®
	Error Values
	Error Codes
	Database Tables
	Database Table Options
	Data Types
	Interface Overview
	Notes
	DPV® Sample

