Table of Contents

Section 1: INtroduction aN0 OVEIVIEWcuiuiiiiieiiiiee sttt b bttt ene e 3
USPS® Address Matching System DeVElOPEr™S Kit..........cuiiiiiiiiiiiiiiee e 3
Address Matching System TeChNICAl SUPPOIT........couiiiiiiiiiiiee ettt 3
Installation Procedures for Windows (32 Bit)cccoviiiiiriiiciiisiee st 4
Installation Procedures for SUN UNIX (32 Bit)cccviiciiiiiiiiiiiiiii s 6
Installation Procedures for SUN UNIX (84 Bit)ccccccciiiiiiiiiiiiii i 8
Installation Procedures fOr ALX UNIX. ...t s 10
Installation Procedures for LINUX (32 Bit)couiieiiriiiineiiieei st 12
Installation Procedures for LINUX (B4 Bit)cccocuiiiiiiieiiieei sttt 14

Section 2: CodiNG REQUITEMENTScviviiiieeeeieieteeieie sttt 16
Thread Safety ...

Process Safety.......ccocvverieiiniinienisenn,

Stop Processing / False Positive Events ..

FUNCLION CAII QTR ...t bbbttt

SECLION 32 AP FUNCHIONSc.cuiiiiiiiiii ettt ettt 18
Open the Address Matching System with Special PArameters..........covveevrierineeireeneseseesiee e seseeeenes 19
AQUTESS INGUITY ..ttt ettt s et et e s e et st e e e b e et s e st s e s e e e s e se e e e s ne s e n et asanenennene e enenens 22
ALATESS SOMT KBY ...ttt bbbkt b b b st e st bt s b e b et e b e e b e b e Rt e bt ke ee e b ebe e b et e s b ebe et e nbeneabeebeneenes 28
Lo 1o L 3o (1 2SR 30
LL-CIGIE INQUITY cett ettt bttt b et h b b e e bt e b e b et e b e e b e e e e st e bt ke ke s b eb e b e ke eeb et e b ese et e ebe st nes
Address Standardization...................

Close the Address Matching System
Read City/State File By Key..............

Read City/State File Next....

REAU ZIPH4 FlE BY KEY ...ttt bbb bbbt b ettt enes
REAU ZIPH4 FIlE NEXL..... etttk b bbb bbbttt ettt ens 41
REAA ZIPH4 FIE PIEVIOUS ...ttt bbbttt 43
Get ZIP Codes from @ CHLY/SEALEcveiieeiiiicieiiieie ettt ettt ettt en et 45
Terminate ACtIVE AAIESS INQUITY.......oiiiieiiee ettt ettt ettt 47
Get Date Of ZIP+4 DAADASEcvveiveeicieeeiei ettt bbbttt 48
Gt AMS Data EXPITATIONc.vviveriiiieiiieeieet ettt ettt ettt sttt en st 50
Gt AMS Library EXPIFALIONc.eeveieirieeiieeee e ettt st se et e se e e ntese e esesenessen e e enenenees 52

Address Matching System API User Guide « August 2011 1

GEE AP COUE VEISION.viiieiieiite ettt ettt ettt sttt ettt eatebe et e st essese et e et e b eseebe et et essesesbe st essebeebe st e s ebeeteseensesesbensens 54

MUIEIPIE RESPONSE SLACK ... ivvvereieteieeieiesie ettt ettt s s et et e s e e s e e e s e e e nnereneenen 55
GBE LASE ETTON ...ttt et 57
G ENVIFONIMENT ...ttt bbbt £t b bbb bbbttt 59
Retrieving the LACS ™® SECUILY KEYc..iveeeeieesieeeeeeeeesesesees e esees e es s es e ss s s es e sess s sseen s 60
Checking fOr LACS ™ fUNCHONAITLYvveeeeeceeeeeseeseeesee e esss s 63
Disabling the LACS ™® SECUILY KEY...........cvrrveeeeeeeseeeseeeseeesseesees e eseees e es s s s st sess s eseees e eneon 66
SUITE"™K™ DALADASE DALEevvvvveoeessaeessseiessesesseeesessesss s ss sttt 69
SUITE™ME™ EFTOF COUE . .1vvvovvvteeeessaeeesseeessse s ses st 71
SUITENE™ EFTOI MESSAGEvovveeeeeeetceeeeveeeeeee et e es s en st ensesesanesens 72
SUITE ™M™ QUETY ..ottt en e 74
Abbreviated Street AAAreSS QUETYciciiiiiiiiii it 76
SECLION 4: FOOTNOTE FIAGS ...vivitireiieiiete ettt bbbttt s et e ettt ebene s 78
SECLION 5. RECOIT TYPESectiiitiiiiitetiiet ettt sttt bbb bbbtk b bbbt b b st b bt bbbttt et bene s 81
SECLION B: RELUIN COUESottt bbbt b bt b bbbttt eb st b et et ebene s 82
Appendix Az INterface DEFINITIONooeiiii et 83
APPeNndix B: GDEV APPIICALION ..ottt bbbt b et et b e e st b st eas 94
APPENAIX C: DPV® ...ttt et b ettt bt b b e e R e b a4 e b e bt b e e b e s b e Rt e bt e b e et e e estabe e b e e eneabesbeneas 95
ETTOT VIUBS ...t e h bbb bbbt b ettt b e bt 95
ETTOE COUES ...t e bt E R bR R bbbt E ettt b et ens 95
Database TADIES ... s 96
Database Table OPLIONSciiiciiiiii s 96

Data Types...........

Interface Overview...

Address Matching System API User Guide « August 2011 2

Section 1: Introduction and Overview

Section 1: Introduction and Overview

The USPS® Address Matching System Application Programming Interface User Guide is the primary reference
document for the USPS National Customer Support Center’s Address Matching System product. The guide
contains installation instructions for each platform as well as function descriptions.

The USPS® Address Matching System (AMS) is an application programming interface (API). As such, this guide
should be used when the user wants to interface an application with the Address Matching System.

USPS® Address Matching System Developer’s Kit

The USPS Address Matching System Developer’s Kit contains the following:

* API library(s) for each specific computer platform
« Interface definition file (ZIP4.H)

« Test utility (SAMPLE.EXE)

« Test utility source code

* User documentation

The test utility can be used to ensure that the Address Matching System and data files have been installed correctly
and to provide access to our matching logic, which displays the standardized address returned by the matching
engine. This enables you to verify the accuracy of the ZIP+4 results returned from your product.

The AMS software, including, but not limited to, .DLLs, shared objects and static objects all expire and cease
functionality based on USPS Coding Accuracy Support System (CASS™) guidelines. The AMS software expires
July 31st each year. The AMS data expires 105 days from the release date of the DVD, which is the 15th day of each
month.

During your development cycle and subsequent updates of your software, you should compile your software with

the AMS library. The AMS library will handle any necessary interface with the DPV® library, the Suite“™® library
and the KeyManager library.

Address Matching System Technical Support

If there are any questions regarding the Address Matching System API, please call the USPS’ National Customer
Support Center, Address Matching System Technical Support at 1-877-640-0724. Hours of operation are 7am to
5pm Monday through Friday CST.

Address Matching System API User Guide * August 2011 3

Section 1: Introduction and Overview

Installation Procedures for Windows (32 Bit)

1. Create a directory on your hard drive in which to store the API files.
Ex: MD C:\AMS
2. Copy the Address Matching System files to your hard drive.

The AMS Product is distributed on DVD. The AMS files are located in the corresponding
directory below:

[DVD] \<PRODUCT TYPE>\dev_kits\w32\
All of the files in this directory are encrypted and must be unencrypted before use.
There are two (2) utility programs on the DVD that will unencrypt files.

a. GDEV - See Appendix B for description and use
b. dev_w32.exe located in the dev_kits directory

Ex: DEV_W32 CUST ID OUTPUT PATH PRODUCT FILE

i. OUTPUT_PATH is the directory created in step 1.
ii. PRODUCT_FILE is the file from the list in step 6. This should not include any directory
paths.

The installation program must be executed from within the DVD directory. This step needs to be performed
once for each file listed in the file description in step 6.

Note: A customer ID (CUST_ID) should be obtained from Address Matching System Technical Support.
The customer ID must be entered in uppercase letters. The customer ID provided by Address Matching
System Technical Support will change each month. We do not recommend hard-coding the customer 1D
into an install program. For program installation, you may obtain a unique customer ID from Address
Matching System Technical Support. This unique customer 1D will not change for the duration of the AMS
API license unless otherwise specified.

3. Run SAMPLE.EXE to test AMS.

Select the option to manually enter the paths.
4. Use SAMPLE.C as an example to create your own API application.

5. Refer to Section 3, API Functions, to test other API function commands.

6. The following is an explanation of the API files for W32:

a. ZIP4 W32.DLL Z1P4 dynamic-link library

b. ZIP4_W32.LIB Stub library to link with the user application
c. ZIP4AH Interface header file

d. ZACONFIG.DAT File location file

e. ZACXLOG.DAT Date time file

Address Matching System API User Guide * August 2011 4

Section 1: Introduction and Overview

f. SAMPLE.C Sample C source file
g. SAMPLE.H Sample header file
h. SAMPLE.EXE Sample executable

i. KEYMGR3.DLL Key manager dll

Special Notes for Windows (32 Bit)

The Windows 32-bit version of the Address Matching System DLL was built with all export functions having the
‘_cdecl’ calling convention, which has caused problems with some programming languages that do not support this
convention. To provide access to the address matching routines in the DLL for non C and C++ languages, the DLL
also contains a set of routines with the proper DLL calling convention “_stdcall.” These routines have separate
names from the original routines to preserve linkage with existing programs, and the new names are a concatenation
of the original function name and ‘STD,” which implies the _stdcall calling convention, e.g.,

_cdecl function name _stdcall function name

z4opencfg() z4opencfgSTD ()
z4adring () z4adringSTD ()
z4close () z4closeSTD ()

All of the _stdcall functions map directly to the original functions, so there is no loss in functionality. All existing
functions have an associated _stdcall version, and all future additions to the DLL will contain both a _cdecl version
and a _stdcall version.

Address Matching System API User Guide * August 2011 5

Section 1: Introduction and Overview

Installation Procedures for SUN UNIX (32 Bit)

1.

Create a directory on your hard drive in which to store the API files.
Ex: mkdir /usr/src/ams
Copy the Address Matching System files to your hard drive.

The AMS product is distributed on DVD. The AMS files are located in the corresponding
directory below:

[DVD] /<PRODUCT TYPE>/dev _kits/sun/
All of the files in this directory are encrypted and must be unencrypted before use.
There are two (2) utility programs on the DVD that will unencrypt the files.

a. GDEV - See Appendix B for description and use.
b. dev_sun.exe is located in the dev_kits directory

Ex: DEV_SUN.EXE CUST_ID OUTPUT PATH PRODUCT_FILE

i OUTPUT_PATH is the directory created in step 1.
ii. PRODUCT_FILE is a file from the list in step 6. This should not include any directory paths.

The installation program must be executed from within the DVD directory. This step needs to be
performed once for each file listed in the file description in step 6 on the next page.

Note: A customer ID (CUST_ID) should be obtained from Address Matching System Technical Support.
The customer ID must be entered in uppercase letters.

The customer ID provided by Address Matching System Technical Support will change each
month. We do not recommend hard-coding the customer ID into an install program. For program
installation, you may obtain a unique customer ID from Address Matching System Technical
Support. This unique customer 1D will not change for the duration of the AMS API license unless
otherwise specified.

Run SAMPLESH and SAMPLEST to test the Address Matching System.

a. CHMOD on SAMPLESH and SAMPLEST to rwx.

b. CHMOD on ZACXLOG.DAT to rw.

c. Select the option to manually enter the paths
Use SAMPLE.C as an example to create your own API application.
Refer to Section 3, API Functions, to test other API function calls.
The following is an explanation of the API files for SUN UNIX:

a. LIBZ4SUN.SO ZI1P4 shared library

b. ZIP4_SUN.A Static link library; not recommended

c. ZIP4AH Interface header file

d. ZACONFIG.DAT File location file

e. ZACXLOG.DAT Date time file

Address Matching System API User Guide * August 2011 6

Section 1: Introduction and Overview

f. SAMPLE.C Sample C source file

g. SAMPLE.H Sample header file

h. SAMPLESH Sample executable linked with LIBZ4SUN.SO
i. SAMPLEST Sample executable built with ZIP4_SUN.A

j. LIBKEYMGR.SO.3 Key manager shared library
Special Notes for SUN UNIX (32 Bit)

The Address Matching System DVD uses the ISO9660 file-system format, which stores file names in uppercase
letters with a version control number appended to the end. The API requires that the DVD file names appear in
lowercase letters without the version number. Some versions of UNIX will automatically accommodate file name
conversion during the mount process, but some require the user to specify the conversion explicitly with the options
of the “mount” command. Please see the man pages on mount for more information on these options.

The Address Matching System SUN API Developer’s Kit contains both a static-link and a shared library.

The static-link library is provided for compatibility with older programs written before the shared library was
available. The USPS does not recommend use of the static-link library because logic changes are often made to the
API, and the user would have to re-link the executable file with the AMS static-link library every time there is an
update. Also, in compliance with CASS rules, the API code is set to expire at the end of the current CASS cycle,
each August. If this date is reached without re-linking with a newer API, a user’s application will stop functioning.

To avoid these problems the USPS recommends using the AMS shared library so that user applications can gain

immediate access to any logic changes simply by installing the new shared library. User applications do not need to
be re-linked when a new shared library is provided on DVD updates.

Address Matching System API User Guide * August 2011 7

Section 1: Introduction and Overview

Installation Procedures for SUN UNIX (64 Bit)

1.

2.

Create a directory on your hard drive in which to store the API files.
Ex. mkdir /usr/src/ams

Copy the Address Matching System files to your hard drive.

The AMS product is distributed on DVD. The AMS files are located in the corresponding
directory below:

[DVD] /<PRODUCT TYPE>/dev_kits/sun/
All of the files in this directory are encrypted and must be unencrypted before use.
There are two (2) utility programs on the DVD that will unencrypt the files.

a. GDEV - See Appendix B for description and use.
b. dev_s64.exe is located in the dev_kits directory

Ex: DEV_S64.EXE CUST ID OUTPUT PATH PRODUCT_ FILE

i OUTPUT_PATH is the directory created in step 1.
ii. PRODUCT _FILE is a file from the list in step 6. This should not include any directory paths.

The installation program must be executed from within the DVD directory. This step needs to be
performed once for each file listed in the file description in step 6 on the next page.

Note: A customer ID (CUST_ID) should be obtained from Address Matching System Technical Support. The

customer ID must be entered in uppercase letters.

The customer 1D provided by Address Matching System Technical Support will change each month. We do
not recommend hard-coding the customer ID into an install program. For program installation, you may
obtain a unique customer 1D from Address Matching System Technical Support. This unique customer 1D
will not change for the duration of the AMS API license unless otherwise specified.
Run SAMPLESH to test the Address Matching System.
a. CHMOD on SAMPLESH to rwx.
b. CHMOD on ZACXLOG.DAT to rw.
c. Select the option to manually enter the paths
Use SAMPLE.C as an example to create your own API application.
Refer to Section 3, APl Functions, to test other API function calls.
The following is an explanation of the API files for SUN UNIX:
a. LIBZ4SUN64.SO ZIP4 shared library
b. ZIP4AH Interface header file
c. ZACONFIG.DAT File location file
d. ZACXLOG.DAT Date time file

e. SAMPLE.C Sample C source file
f. SAMPLE.H Sample header file
g. SAMPLESH Sample executable linked with LIBZ4SUN.SO

Address Matching System API User Guide * August 2011 8

Section 1: Introduction and Overview

h. LIBKEYMGR.SO.3 Key manager shared library
Special Notes for SUN UNIX (64 Bit)

The Address Matching System DVD uses the 1ISO9660 file-system format, which stores file names in uppercase
letters with a version control number appended to the end. The API requires that the DVD file names appear in
lowercase letters without the version number. Some versions of UNIX will automatically accommodate file name
conversion during the mount process, but some require the user to specify the conversion explicitly with the options
of the “mount” command. Please see the man pages on mount for more information on these options.

The Address Matching System S64 API Developer’s Kit contains a shared library. In compliance with CASS rules,

the API code is set to expire at the end of the current CASS cycle, each August. If this date is reached without
replacing the shared library, a user’s application will stop functioning.

Address Matching System API User Guide * August 2011 9

Section 1: Introduction and Overview

Installation Procedures for AIX UNIX

1 Create a directory on your hard drive in which to store the API files.
Ex. mkdir /usr/src/ams
2 Copy the Address Matching System files to your hard drive.

The AMS product is distributed on DVD. The AMS files are located in the corresponding
directory below:

[DVD] /<PRODUCT TYPE>/dev_kits/aix/
All of the files in this directory are encrypted and must be unencrypted before use.

There are two (2) utility programs on the DVD that will unencrypt the files.

a. GDEV - See Appendix B for description and use.
b. dev_aix.exe located in the dev_kits directory

Ex. DEV_AIX.EXE CUST_ID OUTPUT_PATH PRODUCT_FILE

i OUTPUT_PATH is the directory created in step 1.
ii. PRODUCT_FILE is a file from the list in step 6. This should not include any directory paths

The installation program must be executed from within the DVD directory. This step needs to be performed once for
each file listed in the file description in step 6 on the next page.

Note: A customer ID (CUST_ID) should be obtained from Address Matching System Technical Support. The
customer ID must be entered in uppercase letters.

The customer ID provided by Address Matching System Technical Support will change each month. We do
not recommend hard-coding the customer ID into an install program. For program installation, you may
obtain a unique customer 1D from Address Matching System Technical Support. This unique customer 1D
will not change for the duration of the AMS API license unless otherwise specified.
é Run SAMPLEST to test Address Matching System.
a. CHMOD on SAMPLEST to rwx.
b. CHMOD on Z4CXLOG.DAT to rw.
c. Select the option to manually enter the paths.
4 Use SAMPLE.C as an example to create your own API application.
Refer to Section 3, API Functions, to test other API function commands.
6 The following is an explanation of the API files for AIX UNIX:
a. ZIPA_AIX.A Static-link library
b. ZIP4AH Interface header file
c. ZACONFIG.DAT File location file [Deprecated]
d. ZACXLOG.DAT Date time file
e. SAMPLE.C Sample C source file
f. SAMPLE.H Sample header file

Address Matching System API User Guide * August 2011 10

Section 1: Introduction and Overview

g. SAMPLEST Sample executable built with ZIP4_AIX.A

Special Notes for AIX UNIX

The Address Matching System DVD uses the 1ISO9660 file-system format, which stores file names in uppercase
letters with a version control number appended to the end. However, the API requires that the DVD file names
appear in lowercase letters without the version number. Some versions of UNIX will automatically accommodate
file-name conversion during the mount process, but some require the user to specify the conversion explicitly with
the options of the “mount” command. Please see the man pages on mount for more information on these options.

Address Matching System API User Guide « August 2011 11

Section 1: Introduction and Overview

Installation Procedures for LINUX (32 Bit)

1.

Create a directory on your hard drive in which to store the API files.
Ex. mkdir /usr/src/ams
Copy the Address Matching System files to your hard drive.

The AMS product is distributed on DVD. The AMS files are located in the corresponding
directory below:

[DVD] /<PRODUCT TYPE>/dev_kits/lnx/

All of the files in this directory are encrypted and must be unencrypted before use.

There are two (2) utility programs on the DVD that will unencrypt the files.

a. GDEV - See Appendix B for description and use
b. dev_Inx.exe located in the dev_Kkits directory

Ex. DEV_LNX.EXE CUST ID OUTPUT PATH PRODUCT FILE

i OUTPUT_PATH is the directory created in step 1.
ii. PRODUCT_FILE is a file from the list in step 6. This should not include any directory paths.

The installation program must be executed from within the DVD directory. This step needs to be performed
once for each file listed in the file description in step 6 on the next page. Following initial installation, the only
files that need to be installed with subsequent DVD updates are the header files and libraries. A batch file is
recommended to simplify this install process.

Note: A customer ID (CUST_ID) should be obtained from Address Matching System Technical Support. The

customer ID must be entered in uppercase letters.

The customer ID provided by Address Matching System Technical Support will change each month. We do
not recommend hard-coding the customer ID into an install program. For program installation, you may
obtain a unique customer 1D from Address Matching System Technical Support. This unique customer 1D
will not change for the duration of the AMS API license unless otherwise specified.

Run SAMPLESH and SAMPLEST to test Address Matching System.
a. CHMOD on SAMPLESH and SAMPLEST to rwx.
b. CHMOD on Z4ACXLOG.DAT to rw.
c. Select the option to manually enter the paths
Use SAMPLE.C as an example to create your own API application.
Refer to Section 3, API Functions, to test other API function commands.
The following is an explanation of the API files for LNX:
a. LIBZ4LNX.SO ZIP4 shared library
b. ZIP4A_LNX.A Static link library; not recommended
c. ZIP4AH Interface header file
d. ZACONFIG.DAT File location file
e. ZACXLOG.DAT Date time file

Address Matching System API User Guide * August 2011 12

Section 1: Introduction and Overview

f. SAMPLE.C Sample C source file

g. SAMPLE.H Sample header file

h. SAMPLESH Sample executable linked with LIBZ4LNX.SO
i. SAMPLEST Sample executable built with ZIP4_LNX.A

j. LIBKEYMGR.SO.3 Key manager shared library
Special Notes for LINUX (32 Bit)

The Address Matching System DVD uses the ISO9660 file-system format, which stores file names in uppercase
letters with a version control number appended to the end. However, the API requires that the DVD file names
appear in lowercase letters without the version number. Some versions of UNIX will automatically accommodate
file-name conversion during the mount process, but some require the user to specify the conversion explicitly with
the options of the “mount” command. Please see the man pages on mount for more information on these options.

The Address Matching System LINUX API Developer’s Kit contains both a static-link and a shared library. The
static-link library is provided for compatibility with older programs written before the shared library was available.
The USPS does not recommend use of the static-link library because logic changes are often made to the API, and
the user would have to re-link the executable files with the AMS staticlink library every time there is an update.
Also, in compliance with CASS rules, the API code is set to expire at the end of the current CASS cycle, each
August. If this date is reached without re-linking with a newer API, a user’s application will stop functioning.

To avoid these problems, the USPS recommends using the AMS shared library so that user applications can gain
immediate access to any logic changes simply by installing the new shared library. User applications do not need to
be re-linked when a new shared library is provided on DVD updates.

Special Note: Based on licensees’ feedback (February 2011), USPS® has upgraded to Linux 2.6 (compiler
version 4.3.4). We will continue to support Linux 2.0 (compiler version 2.91.66). Linux 2.6 has been placed in

the LNX dev_kits folders, while the older version Linux 2.0 is available in L32 folder.

Address Matching System API User Guide * August 2011 13

Section 1: Introduction and Overview

Installation Procedures for LINUX (64 Bit)

1.

Create a directory on your hard drive in which to store the API files.
Ex. mkdir /usr/src/ams

Copy the Address Matching System files to your hard drive.

The AMS product is distributed on DVD. The AMS files are located in the corresponding
directory below:

[DVD] /<PRODUCT TYPE>/dev kits/164/

All of the files in this directory are encrypted and must be unencrypted before use.

There are two (2) utility programs on the DVD that will unencrypt the files.

a. GDEV - See Appendix B for description and use
b. dev_l64.exe located in the dev_Kkits directory

Ex. DEV_L64.EXE CUST_ID OUTPUT_ PATH PRODUCT FILE

i OUTPUT_PATH is the directory created in step 1.
ii. PRODUCT_FILE is a file from the list in step 6. This should not include any directory paths.

The installation program must be executed from within the DVD directory. This step needs to be performed
once for each file listed in the file description in step 6 on the next page. Following initial installation, the only
files that need to be installed with subsequent DVD updates are the header files and libraries. A batch file is
recommended to simplify this install process.

Note: A customer ID (CUST_ID) should be obtained from Address Matching System Technical Support. The

customer ID must be entered in uppercase letters.

The customer ID provided by Address Matching System Technical Support will change each month. We do
not recommend hard-coding the customer ID into an install program. For program installation, you may
obtain a unique customer ID from Address Matching System Technical Support. This unique customer 1D
will not change for the duration of the AMS API license unless otherwise specified.

Run SAMPLESH and SAMPLEST to test Address Matching System.
a. CHMOD on SAMPLESH and SAMPLEST to rwx.
b. CHMOD on Z4CXLOG.DAT to rw.
c. Select the option to manually enter the paths
Use SAMPLE.C as an example to create your own API application.
Refer to Section 3, API Functions, to test other API function commands.
The following is an explanation of the API files for LNX:
a. LIBZ4LNX64.SO ZIP4 shared library
b. ZIP4_LNX64.A Static link library; not recommended
c. ZIPAH Interface header file
d. ZACONFIG.DAT File location file
e. ZACXLOG.DAT Date time file

Address Matching System API User Guide « August 2011 14

Section 1: Introduction and Overview

f. SAMPLE.C Sample C source file

g. SAMPLE.H Sample header file

h. SAMPLESH Sample executable linked with LIBZ4LNX.SO
i. SAMPLEST Sample executable built with ZIP4_LNX.A

j. LIBKEYMGR.SO.3 Key manager shared library
Special Notes for LINUX (64 Bit)

The Address Matching System DVD uses the ISO9660 file-system format, which stores file names in uppercase
letters with a version control number appended to the end. However, the API requires that the DVD file names
appear in lowercase letters without the version number. Some versions of UNIX will automatically accommodate
file-name conversion during the mount process, but some require the user to specify the conversion explicitly with
the options of the “mount” command. Please see the man pages on mount for more information on these options.

The Address Matching System LINUX 64 API Developer’s Kit contains both a static-link and a shared library. The
static-link library is provided for compatibility with older programs written before the shared library was available.
The USPS does not recommend use of the static-link library because logic changes are often made to the API, and
the user would have to re-link the executable files with the AMS static-link library every time there is an update.
Also, in compliance with CASS rules, the API code is set to expire at the end of the current CASS cycle, each
August. If this date is reached without re-linking with a newer API, a user’s application will stop functioning.

To avoid these problems, the USPS recommends using the AMS shared library so that user applications can gain

immediate access to any logic changes simply by installing the new shared library. User applications do not need to
be re-linked when a new shared library is provided on DVD updates.

Address Matching System API User Guide « August 2011 15

Section 2: Coding Requirements

Section 2: Coding Requirements

Thread Safety

The Address Matching System library is not thread safe and it’s function calls must be protected if it is to be used in
a multi-threaded application.

Your software will need to implement controls to ensure that the input is queued and submitted to the AMS library
one at a time.

Process Safety

The Address Matching System library can be used in multiple processes, but each process must have a z4cxlog.dat
file that is dedicated for it’s sole use.

The AMS library performs write operations to the z4cxlog.dat file and it is possible that the file can become corrupt
if it is used by multiple processes at the same time.

Stop Processing / False Positive Events

Your software is required to handle false positive events which cause the AMS library to shut down (stop
processing).

This requirement is not unique to the AMS library, it is a requirement that has been placed upon all address
matching software that uses the USPS® DPV® and/or LACS-"™® data products.

False positive detection is a security measure embedded in the DPV and LACS""™ sub-systems of the AMS library.
This security measure is designed to prevent the artificial creation of an address list by detecting when a submitted
address appears to have been constructed artificially and not obtained legitimately. This should be a very rare
occurrence, but when this security measure is tripped the AMS library will shut down and it will no longer process
addresses until the reporting requirement has been completed

The following steps provide an overview of how to comply with this requirement:

1. Determine when a false positive event occurs.
Immediately after all z4adring () function calls your software will need to check the DPV and LAC
sub-systems to see if a false positive event occurred.
DPV sub-system : call z4DpvGetCode (HSF_DPV) and check for the value Y’
LACS"™ sub-system : check the 11k_ind variable of the zZTP4_PARM structure and check for the value ‘F’

SLink

2. If a false positive event was not detected, skip the following steps.

3. Gather the required information.
This includes the submitted address that tripped the false positive and information on the customer that submitted
the address.

This information must be written to a file in a specific format. For details see pages 12 and 13 in the document
http://ribbs.usps.gov/dpv/documents/tech_guides/DPV_LPR.PDF

4. Depending on which sub-system reported the event, call the appropriate function to get the shut-down key.
DPV sub-system : z4DpvGetKey ()
LACS "™ sub-system : z4LLkGetKey ()

5. Send an email to the DSF2STOP@USPS.COM email address informing them that your software has hit a
false positive address. Include the information from step 3 (as a file attachment) and step 4 above in this email.

Address Matching System API User Guide * August 2011 16

http://ribbs.usps.gov/dpv/documents/tech_guides/DPV_LPR.PDF
mailto:DSF2STOP@USPS.COM

Section 2: Coding Requirements

This email will be evaluated by the USPS licensing dept. and they will provide further guidance after reviewing
the information.

6. You will be provided a re-activation key after step 5 has been completed and approved.

7. You will need to pass the re-activation key(s) in as a parameter to the z4DpvSetKey () or the
z4LLkSetKey () function depending upon which sub-system reported the event.

8. Call the z4opencfg () function to open the AMS library.

In addition, it is also required that the following text be included in all end-user documentation to describe this
error.

AMS, DPV, LACSLink and SuiteLink API processing was terminated due to the detection of what is determined to
be an artificially created address. No address beyond this point has been validated and/or processed. In accordance
with the Agreement between the Licensor and the Licensee, AMS, DPV, LACSLink and SuiteLink API shall be
used to validate legitimately obtained addresses only, and shall not be used for the purpose of artificially creating
address lists. The written agreement between the Licensee and the End User shall also include this same restriction
against using AMS, DPV, LACSLink and SuiteLink API to artificially create address lists. Continuing use of AMS,
DPV, LACSLink and SuiteLink API requires compliance with all terms of the Agreement. If you believe this
address was identified in error, please contact your Vendor.

Function Call Order

The AMS library provides your software with the ability to process addresses in compliance with CAS
requirements. In order to accurately comply with these requirements it is recommended that you use the following
steps when submitting addresses to the AMS library.

STM

1. Initially submit the address to the z4adring () function call.

2. If amultiple response is returned, then call the z4DpvResolveMultiResp () function to attempt to resolve
it to a single match.

3. If a default response is returned, then call the z4 SLNKQuery () function to attempt to resolve it to an exact
match.

4. Finally, if you wish to obtain an abbreviated version of the street name, then call the z4ABSQuery () function.

Note: Step 4 is required when your software is processing a CASS test, but it is optional at all other times.
Example code snippet for the steps above:

z4adring (pZip4) ;

if (pZip4->retcc == Z4 MULTIPLE)
z4DpvResolveMultiResp (pZip4) ;

if (pZip4->retcc == Z4 DEFAULT)
z4SLNKQuery (pZip4) ;

if (pZip4->retcc > Z4 MULTIPLE)
z4ABSQuery (pZip4, pAbbr) ;

Address Matching System API User Guide * August 2011 17

Section 3: API Functions

Section 3: API Functions

The following functions are used to perform inquiries on addresses and 9-digit ZIP Codes:

z4opencfg ()
z4adring ()
z4adrkey ()
z4xrfing ()
z4xrfingll ()
z4adrstd ()
z4close ()
z4ctyget ()
z4dctynxt ()
z4adrget ()
z4adrnxt ()
z4dadrprv ()
z4getzip ()
z4abort ()

z4date ()
z4GetDataExpireDays ()
z4GetCodeExpireDays ()
z4ver ()

z4scroll ()
z4geterror ()
z4getenv ()
z4LLkGetKey ()
z4LLkIsDisabled()
z4LLkSetKey ()
z4SLNKGetDate ()
z4SLNKGetError ()
z4SLNKGetErrorMsg ()
z4SLNKQuery ()
z4ABSQuery ()

Open the Address Matching System with Special Parameters
Address Inquiry

Address Sort Key

9-digit Inquiry

11-digit Inquiry

Address Standardization

Close the Address Matching System
Read City/State File by Key

Read City/State File Next

Read ZIP+4 File by Key

Read ZIP+4 File Next

Read ZIP+4 File Previous

Get a ZIP Code range for a City/St
Terminate Active Address Inquiry
Get Date of ZIP+4 Database

Get AMS Data Expiration

Get AMS Library Expiration

Get the Version of the API code
Multiple Response Stack

Get Last Error

Get Environment

Retrieving the LACS-"™ Security Key
Checking for LACS""™ Functionality
Disabling the LACS"™ Security Key
Provides the date associated with a table

Provides the error integer status of Suite"™

Provides the error string status of Suite™"™
Performs a Suite""™ lookup

Performs an abbreviated street address lookup

Address Matching System API User Guide « August 2011 18

Section 3: API Functions

Open the Address Matching System with Special Parameters

The z4opencfg () function opens the Address Matching System for application use. This function must be called
before attempting to use any of the inquiry functions. During system opening, the Address Matching System
allocates memory buffers and file handles for disk 1/0. The function returns a code summarizing the results of the
open operation.

Note: The DPV® and LACS""™® components are no longer optional and must always be enabled. While the
ZA0PEN_PARM still contains the 1 lkflag and dpvflag variables, they no longer provide any
functionality and are ignored by the AMS library. eLOT ® is available through the USPS AMS API,

but it is turned off by default. To enable eLOT® processing, you must first call z4opencfg() and set the
elotflag variable to *Y’. You must also use the CONFIG PARM to specify the paths to the AMS
database.

Syntax

#include “zip4.h”
int z4opencfg(Z40PEN_PARM* openparm) ;

Input

openparm A pointer to a ZAOPEN_PARM structure where the output will be stored.

If a field in the Z4OPEN_ PARM is not used, then it must be initialized to NULL/zero (see example code).
typedef struct

char rsvdl [50] ;
short status;
char* fname;

CONFIG_PARM config;

char ewsflag;
char elotflag;
char llkflag;
char dpvflag;
char systemflag;
char rtsw([l6];
char dpvtypeflag;
char stelnkflag;
char abrstflag;
char rsvd2 [492] ;

}Z40PEN_PARM;

Address Matching System API User Guide * August 2011 19

Section 3: API Functions

Field Definitions:

rsvdl Reserved for future use.

status See “Output” section.

fname Pointer to a string that contains the full path and filename for a custom config file. [Deprecated]
config Embedded structure for setting the path names to the AMS database. (Not used if fname is set)
ewsflag Set to *Y” to activate EWS processing

elotflag Set to ‘Y’ to activate eLOT processing.

1llkflag Usage has been discontinued

dpvflag Usage has been discontinued

systemflag Setto ‘Y’ to de-activate the auto-generation of the security file.

rsvd2 Reserved for future use.

rtsw Reserved for future use.

dpvtypeflag Reserved for future use
stelnkflag Setto ‘Y’ to activate Suite™"™ processing
abrstflag Setto ‘Y’ to activate abbreviated street name processing

Link

Output

ZAOPEN_PARM .status will be set to 1, 2 or 9 to indicate which value was used for the configuration file.
Name Value Meaning

Z4 FNAME 1 Used the value pointed to by the fname character pointer
Z4_CONFIG 2 Used the values pointed to by the CONFIG_PARM structure

Z4 SEARCH 9 Searched for a file named z4config.dat

Return

-1 The USPS Address Matching System is already open

0 The USPS Address Matching System opened successfully

1 The USPS Address Matching System is not in sync

2 The USPS Address Matching System has expired

4 The USPS Address Matching System failed to open DPV

5 The USPS Address Matching System failed to open DPV

7 The USPS Address Matching System failed to open LACS-"™

13 The USPS Address Matching System failed to open Suite"™

17 The USPS Address Matching System failed to open Abbreviated street name

Note: See the DPV User Guide for specific information on DPV errors.

Address Matching System API User Guide » August 2011 20

Section 3: API Functions

Example

#include <stdio.h>
#include “zip4.h”

void main (void)

Z4OPEN PARM openparm;
int rtn=0;

memset (&openparm, 0, sizeof (openparm)) ;

/*Open with the paths embedded in the CONFIG_ PARM structure*/
openparm.config.addressl “c:\\amsdata\\”;
openparm.config.addrindex “c:\\amsdata\\”;
openparm.config.cdrom “d:\\";
openparm.config.citystate “c:\\amsdata\\”;
openparm.config.crossref “c:\\amsdata\\”;
openparm.config.system “c:\\amsdata\\”;
openparm.config.elot :\\elotdata\\”;
openparm.config.elotindex “c:\\elotdta\\”;
openparm.config.llkpath “c:\\1llkdata\\";
openparm.config.dpvpath “c:\\dpvdata\\”;
openparm.config.fnsnpath “c:\\amsdata\\”;
openparm.config.stelnkpath “c:\\slkdata\\”;
openparm.config.abrstpath “c:\\abrstdata\\”;

L | (| | | A [T R
a

/*Turn eLOT processing on*/
openparm.elotflag = ‘Y’;

rtn = z4opencfg(&openparm) ;
if (rtn==0)

printf (“\nSuccess opening the USPS Address Matching System.”) ;
else

printf (“\nError opening the USPS Address Matching System.”);

/*close the USPS Address Matching System*/
z4close () ;

Address Matching System API User Guide « August 2011 21

Section 3: API Functions

Address Inquiry

The z4adring () function commands the Address Matching System to perform an address inquiry using firm
name (optional), address, and city/state/ZIP information. Before performing this function, the input address
information must be copied into the corresponding input fields outlined below. Note that the City, State, and ZIP
fields may be placed either within the parm. ictyi field or copied to the parm.ictyi, parm.stai, and
parm.izipc fields, respectively. Following the address inquiry, the parm. retcc field contains a response code
summarizing the inquiry results. If an address response was found, standardized address information will be located
in the output fields described below.

Syntax

#include “zip4.h”

int z4adring(ZIP4_PARM* parm) ;
Input

parm A pointer to a ZIP4_PARM structure that provides the input and where the output will be stored.

The following fields must be initialized before calling the z4adring () function. If a field is not used, it must be
initialized to zero.

parm.iadll Street Address
parm.iadl2 Firm Name
parm.iadl3 Secondary Address
parm.iprurb Puerto Rican Urbanization Name
parm.ictyi City or City/State/ZIP
parm.istai State or empty
parm.izipc ZIP or empty
parm.iddpvll Future Use
Output
parm.retcc Response Code
Z4_INVADDR 10 — Invalid input address (i.e., contained a dual address)
Z4_INVZIP 11 — Invalid input 5-digit ZIP Code
Z4 INVSTATE 12 — Invalid input state abbreviation code
Z4_INVCITY 13 — Invalid input city name
Z4 NOTFND 21 — No match found using input address
Z4 MULTIPLE 22 — Multiple responses were found and more specific information is
required to select a single or default response
Z4_SINGLE 31 — A single address was found
Z4_DEFAULT 32 — An address was found, but a more specific address could be found with

more information

Address Matching System API User Guide » August 2011 22

Section 3: API Functions

parm. foot Footnotes
parm.foot.a = “A” ZIP Code Corrected
parm.foot.b = “B” City/State Corrected
parm.foot.c = “C” Invalid City/State/ZIP
parm.foot.d = “D” No ZIP+4 Code Assigned
parm.foot.e = “E” ZIP Code Assigned with a Multiple Response
parm.foot.f = “F” Address Not Found
parm.foot.g = “G” All or Part of the Firm Line Used For Address Line
parm.foot.h = “H” Missing Secondary Number
parm.foot.i = “I” Insufficient/Incorrect Data
parm.foot.j = “J” PO Box Dual Address
parm. foot.k = “K” Non-PO Box Dual Address
parm.foot.l = “L” Address Component Changed
parm.foot.m = “M” Street Name Changed
parm foot.n = “N” Address Standardized
parm.foot.o = “0” Multiple response can be broken using the lowest +4
parm.foot.p = “P” Better Address Exists
parm.foot.q = “Q” Unique ZIP Code Match
parm.foot.r = “R” No Match due to EWS
parm.foot.s = “S” Incorrect Secondary Number
parm.foot.t = “T” Multiple response due to Magnet Street Syndrome
parm.foot.u = “U” Unofficial Post Office Name
parm.foot.v = “Vv” Unverifiable City/State
parm.foot.w = “W” Small Town Default
parm.foot.x = “X” Unique ZIP Code Default
parm.foot.y = “Y” Military Match
parm.foot.z = “Z” ZIP Move Match
parm.stelnkfoot = “00” Suite"fnk no match

= Ao Suite""™ match

w Suite"™ did not attempt a lookup

Address Matching System APl User Guide » August 2011 23

Section 3: API Functions

Return Address Description

parm.dadll Standardized Output Address
parm.dadl2 Standardized Output Firm Name
parm.dadl3 Standardized Secondary Address
parm.dprurb Standardized Puerto Rican Urbanization Name
parm.dctya Standardized Output City

parm.dstaa Standardized Output State

parm.dlast Standardized Output City, State, and ZIP
parm.dctys Main Post Office Output City
parm.dstas Main Post Office Output State
parm.abcty Abbreviated Output City

parm.zipc 5-digit ZIP Code

parm.addon 4-digit Add-on Code

parm.cris 4-digit Carrier Route Code
parm.county 3-digit County Code

parm.dpbc 2-digit Delivery Point Barcode and 1-digit Check Digit
parm.mpnum Matched Primary Number

parm.msnum Matched Secondary Number
parm.auto_zone ind Carrier Route Rate Sort Indicator (Y or N)
parm.elot num Enhanced Line of Travel (eLOT) number
parm.elot code eLOT Ascending/Descending Flag (A/D)
parm.1llk rc LACS""™ Return Code

parm.llk ind LACS""™ Indicator

parm.respn Number of Response Records Returned
parm.retcc Lookup Status

parm.adrkey Address Database Key (Binary field)
parm.misc unused input data

Address Matching System API User Guide « August 2011 24

Parsed Input
ppnum
psnum
psnum2
prote
punit
punit2
pprel
ppre2
psufl
psuf2
ppstl
ppst2
ppnam
mpnum
msnum
pmb

pmbnum

Description

Primary Number

Secondary Number

Second or Right Secondary Number
Rural Route Number

Secondary Number Unit

Secondary or Right Secondary Number Unit
First or Left Pre-direction

Second or Right Pre-direction

First or Left Suffix

Second or Right Suffix

First or Left Post-direction

Second or Right Post-direction
Primary Name

Matched Primary Number

Matched Secondary Number

PMB Unit Designator

PMB Number

Address Matching System API User Guide « August 2011

Section 3: API Functions

25

Section 3: API Functions

Return

0 - The USPS Address Matching System resident

1 - The USPS Address Matching System issued a system error
2 - The USPS Address Matching System not ready

3 - DVD has expired

Additional Information About Z4ADRINQ()

If parm.retcc is Z4_INVADDR, Z4_INVZIP, Z4_INVSTATE, Z4_INVCITY, Z4_NOTFND, or Z4_MULTIPLE,
then the return address fields will contain the input address. If the input address is unambiguously a rural route,
highway contract, PO Box, or general delivery address, then the return fields will contain the normalized version of
the input address.

If parm.retcc is Z4_MULTIPLE, then parm.foot, parm.respn, and parm.stack are also returned by the system. The
parm.zipc and/or parm.cris fields may contain data if all records in the stack have the same ZIP Code and/or carrier
route ID.

If parm.retcc is Z4_SINGLE or Z4_DEFAULT, then all fields in the returned data section are returned by the
Address Matching System. The first record in the parm.stack structure will contain the ZIP+4 record to which the
system matched. This record may be used to access the individual fields from the matched record, such as primary
name, suffix, post-directional, etc.

Address Matching System API User Guide » August 2011 26

Section 3: API Functions

Example

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include “zip4.h”
ZIP4_PARM parm;

int main(int argc, char** argv)

Z40OPEN_PARM openparm;

memset (&openparm, 0, sizeof (openparm)) ;

/* ... Populate openparm ... */
/* open the USPS Address Matching System */
if (z4opencfg(&openparm) != 0)

printf (“The USPS Address Matching System failed to open”) ;
/* Always call z4close() even on open failure */
z4close () ;

exit (5) ;

}

/* load input address parameters */
memset (&parm, 0, sizeof (parm)) ;

strepy (parm.iadl2, “ACME TOOL AND DIE”);/* Firm line */
strcpy (parm.iadl3, “STE 200") ;/* Secondary or extra linex/
strepy (parm.iadll, “323 S 152ND ST”) ;/* Primary address line */
strepy (parm.iprurb, “”) ;/* Puerto Rico specific */
strcpy (parm.ictyi, “OMAHA, NE 68154);/* City, State, ZIP */

/* request address inquiry */
z4adring (&parm) ;

/* if a response found (either single or default) */

if (parm.retcc==2%4 SINGLE || parm.retcc==Z4 DEFAULT)
printf (“Found response.\n”)
printf (“Name: $s\n”, parm.dadl2);
printf (*S Addr >s\n”, parm.dadl3);
printf (“*Addr: >s\n”, parm.dadll) ;
printf (“PRUrb: %$s\n”, parm.dprurb) ;
printf (“City: %$s\n”, parm.dctya) ;
printf (“ST: >s\n”, parm.dstaa);
printf (“ZIP: $s\n”, parm.zipc);
printf (“Addon: $s\n”, parm.addon) ;
printf (“DPBC: %s\n”, parm.dpbc) ;
printf (“Pre Dir: $s\n”, parm.stack[0].pre dir);
printf (“Str Name: $s\n”, parm.stack[0] .str_name) ;
printf (“*Suffix: %s\n”, parm.stack[0].suffix) ;
printf (“Post Dir: $s\n”, parm.stack[0] .post dir) ;
printf (“Lacs Ind: $c\n”, parm.stack[0].lacs status);

}

/* close The USPS Address Matching System */
z4close () ;

exit (0)

Address Matching System API User Guide « August 2011 27

Section 3: API Functions

Address Sort Key

The z4adrkey () function creates a sort key for an address. This function can be used in batch processes to sort an
input file in the order that addresses are contained on the Address Matching System data files. However, the
function does not sort your file; it produces a key field to assist your software in sortation. Sorting an input file
usually produces a dramatic increase in processing throughput.

Syntax

#include “zip4.h”
int z4adrkey (ZIP4_PARM* parm) ;

Input

parm A pointer to a ZIP4_PARM structure that provides the input and where the output will be stored.

The following fields must be initialized before calling the z4adrkey () function.

parm.iadll Street Address
parm.iadl2 Firm Name
parm.iprurb Puerto Rican Urbanization Name
parm.ictyi City or City/ State/ ZIP
parm.istai State or empty
parm.izipc ZIP or empty

Output

parm.adrkey Address Sort Key

Note: The contents and length of the address sort key are subject to change at any time. The key contains
binary data and should be used in its entirety for the sort process.

Return

0 - The USPS Address Matching System resident
1 - The USPS Address Matching System issued a system error
2 - The USPS Address Matching System not ready

Address Matching System API User Guide » August 2011 28

Section 3: API Functions

Example
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include “zip4.h”
ZIP4_PARM parm;
int main(int argc, char** argv)
int 1i;
Z40OPEN_PARM openparm;
memset (&openparm, 0, sizeof (openparm)) ;

/* ... Populate openparm ... */

/* open the USPS Address Matching System */
if (z4opencfg(&openparm) != 0)

printf (“The USPS Address Matching System failed to open”) ;

/* Always call z4close() even on open failure */
z4close () ;

exit (5);

}

/* load input address parameters */
memset (&parm, 0, sizeof (parm)) ;

strcpy (parm.iadl2, “ACME TOOL AND DIE”);/* Firm line */
strcpy (parm.iadl3, “STE 200”) ;/* Secondary/extra line */
strcpy (parm.iadll, “323 S 152ND ST”) ;/* Primary address line */
strepy (parm.iprurb, “”) ;/* Puerto Rico specific */
strcpy (parm.ictyi, “OMAHA, NE 68154);/* City, State, ZIP */

/* request address sort key */
z4adrkey (&parm) ;

/* print the address sort key in hex */
for (i=0; i<sizeof (parm.adrkey); i++)
printf (“%$02X"“, parm.adrkeyl[i]) ;

printf (“\n”) ;

/* close The USPS Address Matching System */
z4close () ;

exit (0) ;

Address Matching System APl User Guide » August 2011 29

Section 3: API Functions

9-digit Inquiry

The z4axrfing () (9-digit Inquiry) function commands the Address Matching System to perform an address
inquiry using an input 9-digit ZIP Code. Before using this function, the input 9-digit ZIP Code must be copied into
the parm.iadl1 field outlined below. Following the 9-digit inquiry, the parm.retcc field displays a return code
summarizing the result of the inquiry. If an address response was found, standardized address information can be
found in the output fields described in the Address Inquiry function description (page 22).

Note: This function only returns matches to address records, not to specific addresses. Address records generally
contain a range of possible addresses.

To find a match to a specific address using only the ZIP Code, you will need to use the 11-Digit Inquiry
function (page 32).

Syntax

#include “zip4.h”
int z4xrfing(ZIP4_PARM* parm) ;

Input

parm A pointer to a ZIP4_PARM structure to provide the input and where the output will be stored.
The following field must be initialized before calling the z4xrfing () function:
parm.iadll 9-digit ZIP Code.

Note: Return Code 22 denotes multiple responses. The address fields contain the first of a stack of ten
possible responses (or matches).

Output

parm.retcc Response code

Z4 _SINGLE A single address was found

Z4 DEFAULT A default address was found, but more specific addresses exist
Z4 NOTFND No match found; considered a not found address

Z4 MULTIPLE Multiple responses were found

Refer to the Address Inquiry function description for other output fields (page 22).

Return

0 - The USPS Address Matching System resident

1 - The USPS Address Matching System issued a system error
2 - The USPS Address Matching System not ready

3 - The USPS Address Matching System has expired

Address Matching System API User Guide » August 2011 30

Example

#include
#include
#include
#include

<stdio.h>
<string.h>
<stdlib.h>
“zip4.h”

ZIP4_PARM parm;

int main(int argc, char** argv)

Z40PEN_PARM openparm;
memset (&openparm, 0, sizeof (openparm)) ;
/* ... Populate openparm ... */

/* open the USPS Address Matching System */
if (z4opencfg(&openparm) != 0)

Section 3: API Functions

printf (“The USPS Address Matching System failed to open”) ;

/* Always call z4close() even on open failure */

z4close () ;

exit (5) ;
/* load input 9-digit ZIP parameter */
memset (&parm, 0, sizeof (parm)) ;
strcpy (parm.iadll, ”681642815") ;

/* request address inquiry */
z4dxrfing (&parm) ;

/* if a response found (either single or default) */
if (parm.retcc == Z4_SINGLE || parm.retcc == Z4_ DEFAULT)

printf (“Found response.\n”) ;

printf (“Name: $s\n”, parm.dadl2) ;

printf (“Addr: $s\n”, parm.dadll) ;

printf (“PRUrb: $s\n”, parm.dprurb) ;

printf (“City: $s\n”, parm.dctya) ;

printf (“ST: $s\n”, parm.dstaa) ;

printf (“ZIP: $s\n”, parm.zipc);

printf (“*Addon: $s\n”, parm.addon) ;

printf (“DPBC: $s\n”, parm.dpbc) ;

}

/* close The USPS Address Matching System */
z4close () ;

exit (0) ;

Address Matching System API User Guide « August 2011

31

Section 3: API Functions

11-digit Inquiry

The z4xrfingl1 () (11-digit Inquiry) function commands the Address Matching System to perform an address
inquiry using an input 11-digit ZIP Code. Before using this function, the input 11-digit ZIP Code must be copied
into the parm.iadl1 field outlined below. Following the 11-digit inquiry, the parm.retcc field displays a return code
summarizing the result of the inquiry. If an address response was found, standardized address information can be
found in the output fields described in the Address Inquiry function description (page 22).

Syntax

#include “zip4.h”

int z4xrfingll (ZIP4_PARM* parm) ;

Input

parm A pointer to a ZIP4_PARM structure to provide the input and where the ouput will be stored.

The following field must be initialized before calling the z4xrfing11 () function:

parm.iadll 11-digit ZIP Code

Note Return Code 22 denotes multiple responses. The address fields contain the first of a stack of ten possible
responses (or matches). It is recommended that the first address in the output fields not be used as a
mailing address because it is not an exact match.

Output
parm.retcc Response code

Z4_SINGLE A single address was found
Z4 DEFAULT A default address was found, but more specific addresses exist
Z4 NOTFND No match found; considered a not found address
Z4 MULTIPLE Multiple responses were found
Refer to the Address Inquiry function description for other output fields (page 22).

Return

0 - The USPS Address Matching System resident

1 - The USPS Address Matching System issued a system error
2 - The USPS Address Matching System not ready

3 - The USPS Address Matching System has expired

Address Matching System API User Guide » August 2011 32

Section 3: API Functions

Example

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include “zip4.h”

ZIP4_PARM parm;

int main(int argc, char** argv)
Z40PEN_PARM openparm;
memset (&openparm, 0, sizeof (openparm)) ;
/* ... Populate openparm ... */

/* open the USPS Address Matching System */
if (z4opencfg(&openparm) != 0)

printf (“The USPS Address Matching System failed to open”) ;

/* Always call z4close() even on open failure */
z4close () ;

exit (5);

}

/* load input 11-digit ZIP parameter */
memset (&parm, 0, sizeof (parm)) ;

strcpy (parm.iadll, ”68164281527") ;

/* request address inquiry */
z4axrfingll (&parm) ;

/* if a response found (either single or default) */

if (parm.retcc == Z4_SINGLE || parm.retcc == Z4_DEFAULT)
printf (“Found response.\n”)
printf (“Name: $s\n”, parm.dadl2) ;
printf (“*Addr: $s\n”, parm.dadll);
printf (“PRUrb: $s\n”, parm.dprurb) ;
printf(‘Clty $s\n”, parm.dctya) ;
printf (“S $s\n”, parm.dstaa);
printf(“ZIP $s\n”, parm.zipc);
printf (“*Addon: $s\n”, parm.addon) ;
printf (“DPBC: $s\n”, parm.dpbc) ;

/* close The USPS Address Matching System */

z4close () ;

exit (0) ;

Address Matching System APl User Guide » August 2011 33

Section 3: API Functions

Address Standardization

The z4adrstd () (Address Standardization) function instructs the Address Matching System to standardize an
address. This function can be used when a Z4_MULTIPLE response is returned from the z4adring () function.
Use this function to standardize an address from the stack, but use it with caution. The index parameter is relative to
zero and must be in increments of ten for each z4scrol1l () function called. Therefore, the index will have a value
between zero and parm. respn minus one. Do not use the offset into the current stack of ten records.

When this function is called, the record corresponding to the index value is moved to the first position on the stack
(offset zero). If components from the ADDR_REC structure are needed for the current record that was processed
through z4adrstd(), they may be retrieved from the first stack record. Do not use the modulus 10 of the index (index
% 10) to retrieve the ADDR_REC components from the stack.

Note: This function should only be used when an operator is reviewing the multiple responses returned
and selecting the record to be standardized. Please be advised that using this function in an
unattended (batch) mode may result in inaccurate matches and possible failure to CASS certify.

Syntax

#include “zip4.h”
int z4adrstd(ZIP4_ PARM* parm, int index)

Input

parm Pointer to the unmodified parameter list from the previous call to z4adring ().

index Index of stack record to standardize address (refer to the description above).
This must be less than parm. respn.

Output

parm.dadll Standardized Street Address

parm.dadl2 Standardized Firm Name

parm.dprurb Standardized Puerto Rican Urbanization Name
parm.dlast Standardized City/State/ZIP

Return

0 - Success
1 - Failure (i.e., invalid index parameter)
2 - The USPS Address Matching System not ready

Address Matching System API User Guide * August 2011 34

Section 3: API Functions

Example

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include “zip4.h”
ZIP4_PARM parm;

int main(int argc, char** argv)

Z4OPEN PARM openparm;
memset (&openparm, 0, sizeof (openparm)) ;

/* ... Populate openparm ... */

/* open the USPS Address Matching System */
if (z4opencfg(&openparm) != 0)

printf (“The USPS Address Matching System failed to open”) ;
/* Always call z4close() even on open failure */
z4close () ;

exit (5);

/* load input address parameters */
memset (&parm, 0, sizeof (parm));

strcpy (parm.iadl2, “ACME TOOL AND DIE”); /* Firm line */
strcpy (parm.iadl3, “~); /* Secondary or extra line */
strcpy (parm.iadll, “1336 CHATMAN”); /* Primary address line */
strcpy (parm. iprurb, “”); /* Puerto Rico specific */
strcpy (parm.ictyi, “CORDOVA TN 38018”) ; /* City, State, ZIP */

/* request address inquiry */
z4adring (&parm) ;

/* standardize second address */
z4adrstd (&parm, 1);

/* display address */
printf (“Found response.\n”) ;

printf (“*Name: %$s\n”, parm.dadl2);
printf (“Addr: $s\n”, parm.dadll);
printf (*PRUrb: $s\n”, parm.dprurb) ;
printf (“City: $s\n”, parm.dctya) ;
printf (“ST: $s\n”, parm.dstaa) ;
printf (“ZIP: $s\n”, parm.zipc);
printf (“*Addon: $s\n”, parm.addon) ;
printf (“DPBC: $s\n”, parm.dpbc) ;
/* close The USPS Address Matching System */
z4close () ;

exit (0) ;

Address Matching System API User Guide « August 2011 35

Section 3: API Functions

Close the Address Matching System

The z4close () function closes the Address Matching System and is called when address inquiries have been
completed and the interface is no longer needed. During execution of this function, memory buffers and file handles
allocated during the z4opencfg () function are de-allocated and closed.

Note: The z4close () function call must be called after all calls to the z4opencfg () function call —
regardless if z4opencfg () succeeded or failed.

Syntax

#include “zip4.h”
int z4close(void) ;

Input

None

Output

None

Return

0 - The USPS Address Matching System closed
1 - The USPS Address Matching System not resident
2 - The USPS Address Matching System not ready

Example

#include <stdio.h>
#include “zip4.h”

void main (void)

/* close The USPS Address Matching System */
if (z4close() == 0)
printf (“The USPS Address Matching System closed.\n”);
else
printf (“Error closing the USPS Address Matching System.\n”);

Address Matching System APl User Guide » August 2011 36

Section 3: API Functions

Read City/State File By Key

The zactyget () (Read City/State File By Key) function initiates a read of the City/State File. A specific ZIP
Code can be selected as a starting point in a read of the City/State File. To read subsequent records, the Read
City/State File Next function is used. For documentation on the City/State File, please refer to the Address
Information System Products Technical Guide, which is available from the USPS National Customer Support
Center’s Customer Support Department at 800-238-3150. It is also available on the Internet at
http://ribbs.usps.gov/files/addressing/pubs

Syntax

#include “zip4.h”
int z4ctyget (CITY REC* cityrec, char* zipcode) ;

Input

cityrec Pointer to an empty CITY_REC structure where the output will be stored.
zipcode Pointer to a char array containing a 5 digit ZIP, or “00000”, as the starting point.
Output

The cityrec argument will be populated with the city information for the provided 5 digit ZIP code.

Return

0 - Success
1 - Failure
2 - The USPS Address Matching System not ready

Example
See example code for “Read City/State File Next” (Page 38).

Address Matching System API User Guide * August 2011 37

Section 3: API Functions

Read City/State File Next

The z4ctynxt () (Read City/State File Next) function reads subsequent records of the City/State File. It can only
be used after the z4ctyget () function has been called.

Note: Multiple calls to z4ctynxt () can not be mixed with calls to other Address Matching System functions.
This function is designed to be called after a z4ctyget () or previous z4ctynxt () function call. The
results of the z4ctynxt () are undefined if it is called after any other AMS function call.

Syntax

#include “zip4.h”
int z4ctynxt (CITY _REC* cityrec);

Input

cityrec Pointer to an emtpy CITY_REC structure where the output will be stored.

Output

The cityrec argument will be populated with the next city record in the database.

Return

0 - Success
1 - Failure
2 - The USPS Address Matching System not ready

Address Matching System API User Guide » August 2011 38

Example

#include <stdio.h>
#include <stdlib.h>
#include “zip4.h”

CITY REC city;

int main(int argc, char** argv)

int 1i;

Z40PEN_PARM openparm;

memset (&openparm, 0, sizeof (openparm)) ;
/* ... Populate openparm ... */

/* open the USPS Address Matching System */
if (z4opencfg(&openparm) != 0)

Section 3: API Functions

printf (“The USPS Address Matching System failed to open”) ;

/* Always call z4close() even on open failure */

z4close () ;

exit (5);

}

/* read first city */
z4ctyget (&city, “00000”) ;

/* read 10 more cities */
for(i=0; i<10 && z4ctynext (&city) == 0; ++1)

printf (“%s %$-28.28s %s %s\n”’ city.zip code,
city.city name,

city.state_abbrev,

city.finance) ;

}

/* close The USPS Address Matching System */
z4close () ;
exit (0) ;

Address Matching System API User Guide « August 2011

39

Section 3: API Functions

Read ZIP+4 File By Key

The z4adrget () (Read ZIP+4 File by Key) function is used to read the ZIP+4 File. For documentation on the
ZIP+4 File, please refer to the Address Information Products Technical Guide, which is available from the USPS
National Customer Support Center’s Customer Support Department at 800-238-3150. It is also available on the
Internet at http://ribbs.usps.gov/files/addressing/pubs A specific postal finance number can be selected as a starting
point in a read of the ZIP+4 File. To read subsequent records, the z4adrnxt() function is used. To read previous
records, the z4adrprv function is used.

Syntax

#include “zip4.h”
int z4adrget (ADDR_REC* addrrec, char* finance) ;

Input

addrrec A pointer to an empty ADDR_REC structure.

finance A pointer to a char array containing the starting finance number or “000000”
Output

The addrrec argument will be populated with the first address for the finance number provided.

Return

0 - Success
1 - Failure
2 - The USPS Address Matching System not ready

Example
See example code for “Read ZIP+4 File Next” (page 41)

Address Matching System API User Guide « August 2011 40

http://ribbs.usps.gov/files/addressing/pubs

Section 3: API Functions

Read ZIP+4 File Next

The z4adrnxt () (Read ZIP+4 File Next) function reads subsequent records of the ZIP+4 File. It can only be used
after the z4adrget () function has been called.

Note: Multiple callsto z4adrnxt () can not be mixed with calls to other Address Matching System functions.
This function is designed to follow a z4adrget (), z4adrprv () or another z4adrnxt () function
call. The results of z4adrnxt () are undefined if it is called after any other AMS function

Syntax

#include “zip4.h”
int z4adrnxt (ADDR_REC* addrrec) ;

Input
addrrec A pointer to an empty ADDR_REC structure where the output will be stored.

Output

The addrrec argument will be populated with the next address in the database.

Return

0 - Success
1 - Failure
2 - The USPS Address Matching System not ready

Address Matching System API User Guide « August 2011 41

Example

#include
#include
#include
#include

CITY_REC
ADDR_REC

<stdio.h>
<stdlib.h>
<string.h>
“zip4.h”

city;
addr;

int main(int argc, char** argv)

Z40PEN_PARM openparm;

Section 3: API Functions

memset (&openparm, 0, sizeof (openparm)) ;

/*

Populate openparm ... */

/* open the USPS Address Matching System */

if

}
/*

(z4opencfg (&openparm) != 0)

printf (“The USPS Address Matching System failed to open”) ;

/* Always call z4close()
z4close () ;

exit (5);

read a city */

z4ctyget (&city, “00000”);

even on open failure */

/* read first address record for this city */

z4adrget (&addr, city.finance);

/* read remaining addrs for this finance number */
while (z4adrnxt (&addr) == 0)

}

/* check if finance number has changed */

if (memcmp (addr.finance,

break;

/* Code to process the current address record.

city.finance, 6) != 0)

/* close The USPS Address Matching System */
z4close () ;

exit (0) ;

Address Matching System API User Guide « August 2011

*/

42

Section 3: API Functions

Read ZIP+4 File Previous

The z4adrprv () (Read ZIP+4 File Previous) function reads prior records of the ZIP+4 File within a ZIP code. It
can only be used after the z4adrget () function has been called.

Note: Multiple calls to z4adrprv () can not be mixed with calls to other Address Matching System
functions. This function is designed to follow a z4adrget (), z4adrnxt () or another
z4adrprv () function call. The results of z4drprv () are undefined if it is called after any other
AMS function

Syntax

#include “zip4.h”
int z4adrprv (ADDR_REC* addrrec) ;

Input
addrrec A pointer to an empty ADDR_REC structure where the output will be stored.

Output

The addrrec argument will be populated with the previous address in the database.

Return

0 - Success
1 - Failure
2 - The USPS Address Matching System not ready

Address Matching System API User Guide « August 2011 43

Example

#include
#include
#include
#include

CITY_REC
ADDR_REC

<stdio.h>
<stdlib.h>
<string.h>
“zip4.h”

city;
addr;

int main(int argc, char** argv)

Z40OPEN_PARM openparm;

Section 3: API Functions

memset (&openparm, 0, sizeof (openparm)) ;

/*

Populate openparm ... */

/* open the USPS Address Matching System */

if

}
/*

(z4opencfg (&openparm) != 0)

printf (“The USPS Address Matching System failed to open”) ;

/* Always call z4close()
z4close () ;

exit (5);

read a city */

z4ctyget (&city, “00000”) ;

even on open failure */

/* read first address record for this city */

z4adrget (&addr, city.finance);

/* read previous addrs for this finance number */
while (z4adrprv (&addr) == 0)

}

/* check if finance number has changed */

if (memcmp (addr.finance,

break;

/* Code to process the current address record.

city.finance, 6) != 0)

/* close The USPS Address Matching System */
z4close () ;

exit (0) ;

Address Matching System API User Guide « August 2011

*/

44

Section 3: API Functions

Get ZIP Codes from a City/State

The z4getzip () (Get ZIP Codes) from a City/State function retrieves a range of ZIP Codes for a city or state and
returns the valid high and the low values for the input city/state. The standardized form of the input city/state as well
as the finance number is also returned.

Note: All ZIP Codes within the range are not necessarily valid.

Syntax

#include “zip4.h”
int z4getzip (GET_ZIPCODE_STRUCT* parm) ;

Input

parm A pointer to a GET_ZIPCODE_STRUCT structure to provide the input and where the output will be
stored.

The requested city and state must be populated before calling the function.

parm.input cityst Input city/state to lookup

Output

parm.output cityst Standardized city/state
parm.low_ zipcode Low ZIP Code value
parm.high zipcode High ZIP Code value
parm.finance num Finance number
Return

0 - Success

1 - Failure

Address Matching System API User Guide « August 2011 45

Section 3: API Functions

Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include “zip4.h”

GET_ZIPCODE_STRUCT parm;
int main(int argc, char** argv)
Z40PEN_PARM openparm;
int result;
memset (&openparm, 0, sizeof (openparm)) ;
/* ... Populate openparm ... */

/* open the USPS Address Matching System */
if (z4opencfg(&openparm) != 0)

printf (“The USPS Address Matching System failed to open”) ;
/* Always call z4close() even on open failure */
z4close () ;

exit (5);

}

/* read a city */
strcpy (parm.input cityst, “MEMPHIS TN”) ;
result=z4getzip (&parm) ;

/* Display the ZIP codes found */

if (result == 0)
printf (*CITY FOUND: $s\n”,parm.output cityst);
printf (*LOW ZIP: $s\n” ,parm.low zipcode) ;
printf (“HIGH ZIP: $s\n”,parm.high zipcode) ;
printf (“"FINANCE: %s\n",parm.finance_num);

1

/* close The USPS Address Matching System */

z4close () ;

exit (0) ;

Address Matching System API User Guide « August 2011 46

Section 3: API Functions

Terminate Active Address Inquiry

The z4abort () (Terminate Active Address Inquiry) function terminates an active address inquiry and is useful in
real-time applications where each inquiry must be completed within a specified period of time. This function would
normally be called from within a timer interrupt handler. The z4adring () call in progress is terminated by the
function call.

Syntax

#include “zip4.h”
int z4abort (void) ;

Input

None

Output

None

Return

None

Address Matching System API User Guide « August 2011 47

Section 3: API Functions

Get Date of ZIP+4 Database
The z4date () (Get Date of ZIP+4 Database) function returns the date of the ZIP+4 database and prints the date

for PS Form 3553 (CASS certificate). The date is returned as an 8-byte character string in the “YYYYMMDD”
format.
Syntax

#include “zip4.h”
int z4date (char* date);

Input

date A pointer to a char array that will be modified to contain the date of the database. The char array must be
at least nine (9) bytes in length.

Output
The date of the ZIP+4 database. This field must be at least nine (9) bytes in length.

Return

0 - Success
1 - Failure
2 - The USPS Address Matching System not ready

Address Matching System API User Guide * August 2011 48

Example

#include <stdio.h>
#include <stdlib.h>
#include “zip4.h”
char date[9];

int main(int argc, char** argv)

Z40PEN_PARM openparm;
memset (&openparm, 0, sizeof (openparm)) ;
/* ... Populate openparm ... */

/* open the USPS Address Matching System */
if (z4opencfg(&openparm) != 0)

Section 3: API Functions

printf (“The USPS Address Matching System failed to open”) ;

/* Always call z4close() even on open failure */

z4close () ;

exit (5) ;

}

/* get release date */

z4date (date) ;

printf (“Release date: %s\n”, date);

/* close The USPS Address Matching System */

z4close () ;

exit (0) ;

Address Matching System API User Guide « August 2011

49

Section 3: API Functions

Get AMS Data Expiration

The z4GetDataExpireDays () (Get AMS Data Expiration) function instructs the Address Matching System to
return the number of days until the AMS database expires. Because the function can be used periodically to check
the number of days remaining until database expiration, it is strongly recommended that you integrate this function
into your software.

Note: This function replaces the z4expire () function.

Syntax

#include “zip4.h”
int z4GetDataExpireDays (void) ;

Input

None

Output

None

Return
-1 The AMS database has expired. Otherwise, the number of days until the AMS database expires.

Address Matching System API User Guide * August 2011 50

Example

#include <stdio.h>
#include <stdlib.h>
#include “zip4.h”

int main(int argc, char** argv)

Z40PEN_PARM openparm;

int days = 0;

memset (&openparm, 0, sizeof (openparm)) ;
/* ... Populate openparm ... */

/* open the USPS Address Matching System */
if (z4opencfg(&openparm) != 0)

Section 3: API Functions

printf (“The USPS Address Matching System failed to open”) ;

/* Always call z4close() even on open failure */

z4close () ;
exit (5);

}

/* get number of days until database expiration */

days = z4GetDataExpireDays() ;

if (days == -1)

printf (“AMS database has already expired.\n”);

else

printf (“*%d days until AMS database expiration.\n”, days);

/* close The USPS Address Matching System */
z4close () ;

Address Matching System API User Guide « August 2011

51

Section 3: API Functions

Get AMS Library Expiration

The z4GetCodeExpireDays () (Get AMS Library Expiration) function instructs the Address Matching System
to return the number of days until the AMS library expires. Because the function can be used periodically to check
the number of days remaining until library expiration, it is strongly recommended that you integrate this function
into your software.

Syntax

#include “zip4.h”
int z4GetCodeExpireDays (void) ;

Input

None

Output

None

Return
-1 —The AMS library has expired. Otherwise, the number of days until the AMS library expires.

Address Matching System API User Guide * August 2011 52

Section 3: API Functions

Example
#include <stdio.h>

#include <stdlib.h>
#include “zip4.h”

int main(int argc, char** argv)
Z40PEN_PARM openparm;
int days = 0;
memset (&openparm, 0, sizeof (openparm)) ;
/* ... Populate openparm ... */

/* open the USPS Address Matching System */
if (z4opencfg(&openparm) != 0)

printf (“The USPS Address Matching System failed to open”) ;

/* Always call z4close() even on open failure */
z4close () ;

exit (5);

/* get number of days until database expiration */
days = z4GetCodeExpireDays () ;

if (days == -1)
printf (“*AMS library has already expired.\n”);
else
printf (*%d days until AMS library expiration.\n”, days);

/* close The USPS Address Matching System */
z4close () ;

Address Matching System API User Guide « August 2011 53

Section 3: API Functions

Get API Code Version

The z4ver () (Get API Code Version) function commands the program to retrieve the version string of the API
code. This string is in compliance with the CASS requirements for address matching software version information
and may be used when generating a PS Form 3553 for mailing discounts.

Note: Most functions require you to call z4¢opencftg () first to initialize the AMS system. This function does not
require the AMS system to be open.

Syntax

#include “zip4.h”
int z4ver (char* ver) ;

Input

ver A pointer to a char array where the output will be stored.

Output

The ver argument will be populated with the version string.

Return

0 - Success

Example

#include <stdio.h>
#include “zip4.h”

void main (void)
char version([32];

/* get the Address Matching System version */
z4ver (version) ;

printf (“The Address Matching System version is %s\n”, version) ;
exit (0);

Address Matching System API User Guide * August 2011 54

Section 3: API Functions

Multiple Response Stack
Scroll the Stack of Address Records

The z4scroll () (Scroll the Stack of Address Records) function commands the Address Matching System to
access additional stacks of ten address records each. The function is related to the z4adring () and z4xrfing ()
functions, which return up to ten records when the Z4_MULTIPLE or Z4_DEFAULT return codes are set. When
the parm. respn field contains a number greater than ten, your program can use this function to obtain additional
stacks of ten address records (up to the number of records specified in the parm. respn return field). This function
may only be called immediately after a call to the z4adring () or z4axrfing () functions.

Syntax

#include “zip4.h”
int z4scroll (ZIP4_ PARM* parm) ;

Input

parm A pointer to the unmodified ZIP4_PARM structure that was returned from a previous z4adring () call.

Output

The parm. stack field will be updated to contain the next ten records (fewer records may be returned if less than
ten records remain).

Return

0 - Success

1 - The USPS Address Matching System not installed
2 - The USPS Address Matching System not open

3 - Stack access not allowed

Address Matching System API User Guide « August 2011 55

Example

#include
#include
#include
#include

<stdio.h>
<stdlib.h>
<string.h>
“zip4.h”

ZIP4_PARM parm;

Section 3: API Functions

int main(int argc, char** argv)

Z40OPEN_PARM openparm;

int 1 = 0;

memset (&openparm, 0, sizeof (openparm)) ;
/* ... Populate openparm ... */

/* open the USPS Address Matching System */
if (z4opencfg(&openparm) != 0)

printf (“The USPS Address Matching System failed to open”) ;

/* Always call z4close() even on open failure */
z4close() ;

exit (5);

/* Create parameter list and call the USPS Address Matching System */
memset (&parm, 0, sizeof (parm)) ;

strcpy (parm.iadll, “1336 CHATMAN”") ;
strcpy (parm.ictyi, “CORDOVA TN”) ;

z4adring (&parm) ;

/*process all addresses returned by The USPS Address Matching System */
for (i=0; i<parm.respn; i++)

/* check if stack needs to be refreshed */
if (1 != 0 && (i% 10) == 0)

{

if (z4scroll (&parm))
break;

/* examine each address returned by The USPS Address Matching System */
/* close The USPS Address Matching System */
z4close () ;

exit (0) ;

Address Matching System API User Guide « August 2011 56

Section 3: API Functions

Get Last Error

The z4geterror () (Get Last Error) function retrieves the last error that was encountered after a failed
z4opencfg () function call.

Syntax

#include “zip4.h”
int z4geterror (Z4 ERROR* pError) ;

Input

pError Pointer to an empty Z4_ERROR structure where the output will be stored.

Output

pError will be populated with the last error that was encountered.

Return

#defines for the iErrorCode values and their meanings:

EROR_FILE_OPEN
ERROR_FILE_READ
ERROR_FILE_WRITE
ERROR_FILE_FIND
ERROR_FILE_EXPIRE
ERROR_FILE_SYNC
ERROR_SECURITY

Error opening a file

Error reading a file

Error writing to a file

Error finding a file

AMS library has expired

AMS Database files are out of sync
AMS Security error

~No ol WN

Address Matching System API User Guide « August 2011 57

Example

Section 3: API Functions

#include <stdio.h>
#include <string.h>
#include “zip4.h”

int main(int argc, char** argv)

Z4 ERROR errorparm;
Z4_ENV envparm;
Z40OPEN PARM openparm;

memset
memset
memset

/*

T&errorparm, 0, sizeof (Z4 ERROR)) ;
(&envparm, 0, sizeof (Z4 ENV)) ;
(&openparm, 0, sizeof (Z40OPEN) PARM)) ;

Populate openparm ... */

/* open the USPS Address Matching System */
if (z4opencfg(&openparm) != 0)

else

printf (“The USPS Address Matching System failed to open”) ;
z4getenv (&envparm) ;
z4geterror (&errorparm) ;

/* Detailed Error Information */
printf (“\n\nDETAILED ERROR INFORMATION\n");

printf(®-------mm e \n”)

printf (“Error Message: %s\n”, errorparm.strErrorMessage) ;
printf (*File Name: %s\n”, errorparm.strFileName) ;
printf (“Diagnostics: %$s\n”, errorparm.strDiagnostics) ;

/* Detailed Environment Information */
printf (“\n\nDETAILED ENVIRONMENT INFORMATION\n”) ;

printf (M-----m e e \n”) ;
printf (“Configuration File: %s\n”, envparm.strConfigFile) ;
printf (*Addressl: %$s\n”, envparm.addressl) ;
printf (*AddrIndex: $s\n”, envparm.addrindex) ;
printf (“CityState: %s\n”, envparm.citystate);
printf (“CrossRef: %s\n”, envparm.crossref) ;
printf (“*System: %s\n”, envparm.system) ;
printf (“eLOT: %s\n”, envparm.elot) ;
printf (“eLOTIndex: %s\n”, envparm.elotindex) ;
printf (“EWS Path: %s\n”, envparm.ewspath) ;
printf (*elLOT Flag: $s\n”, envparm.elotflag) ;

printf (“The USPS Address Matching System opened successfully\n”);

return 0;

Address Matching System API User Guide « August 2011 58

Section 3: API Functions

Get Environment
The z4getenv () (Get Environment) function retrieves the environment for the Address Matching System.

Syntax

#include “zip4.h”
int z4getenv(Z4_ENV* pEnv) ;

Input

pEnv Pointer to an empty Z4_ENV structure where the output will be stored.

Output

pEnv will be populated with the environment for the Address Matching System.

Return

0 — Success

Example
See example code for “Get Last Error” (page 57)

Address Matching System API User Guide * August 2011 59

Section 3: API Functions

Retrieving the LACS-"® Security Key

The z4LLkGetKey () function returns the stop processing security key used to disable LACS-"™®, A stop
processing security key is an alphanumeric character string that is randomly generated when a LACS-™® security
violation occurs.

You may call the z4LLkGetKey () function after a LACS“"™® security violation occurs. In order to identify a
LACS“"™® security violation, a return value of 7 (seven) is given after making an open call. At that point you may
call z4TL.LkGetKey () to retrieve the randomly generated stop processing security key.

The stop processing security key returned from z4LLkGetKey () will be used to generate the corresponding
enable security key you need for z4LLkSetKey (). You can obtain an enable security key from a customer care
representative in exchange for the stop processing security key given to you by z4LLkGetKey ().

Note: During a z4LLkGetKey () call OS resources are allocate so a call to z4close () must be made in
order to free the resources.

Syntax
#include “zip4.h”
const char* Z4FUNC z4LLkGetKey (void) ;

Input
None

Output

None
Return

const char* - pointer to a null terminated alphanumeric character string

Address Matching System API User Guide » August 2011 60

Section 3: API Functions

Example

#include <stdio.h>
#include “zip4.h”

void main(void)
Z40PEN_PARM OpenParm;
char szKey[32] = {0};
int iReturn = 0;

memset (&openparm, 0, sizeof (Z40PEN_PARM)) ;

/* Setting up paths */

OpenParm.config.addressl = “c:\\amsdata\\”;
OpenParm.config.addrindex = “c:\\amsdata\\”;
OpenParm.config.cdrom = “d:\\";

OpenParm.config.citystate = “c:\\amsdata\\”;
OpenParm.config.crossref = “c:\\amsdata\\”;
OpenParm.config.system = “c:\\amsdata\\”;
OpenParm.config.llkpath “c:\\1llkdata\\";

OpenParm.config.dpvpath = “c:\\dpvdata\\”;

/* open the USPS Address Matching System */
iReturn = z4opencfg(&OpenParm) ;

/* success */
if (iReturn == 0)
printf ("\nThe USPS Address Matching System Opened

Successfully.");

/* LACSLink security violation */
else if (iReturn == 7)

const char* szCode = z4LLkGetKey () ;

/* display error message an security code */
printf ("\nLACSLink has been disabled.");

printf ("\n\nSecurity code: %s", szCode) ;
printf ("\nTo enable LACSLink contact customer support with the
security") ;

printf ("\ncode above to receive the security key you need to
enable LACSLink\n") ;

/* prompt for security key */

printf ("\nEnter security key w/o formatting characters: ");
gets (szKey) ;

Address Matching System API User Guide « August 2011 61

Section 3: API Functions

/* verify security key */
if (z4LLkSetKey (szKey))

/* inform user of success */
printf ("\nThe key %s is valid and LACSLink is enabled.",

szKey) ;
else
{ . .
/* inform user of failure */
printf ("\nThe key %s is invalid and LACSLink is disabled.",
szKey) ;

/* other errors */

else
{ . . .
printf ("\nError Opening the USPS Address Matching System.");
}
/* close the USPS Address Matching System */
z4close () ;

Address Matching System APl User Guide » August 2011 62

Section 3: API Functions

Checking for LACS""™ functionality

The z4LLkIsDisabled () identifies when LACS-"™® functionality is enable/disabled. When the return value
from z4LLkIsDisabled () is TRUE (non-zero) LACS-™® is disabled otherwise LACS-™® is enabled.

Before LACS"™® can be enabled a system open call must be made with the Z40PEN_PARM.11kflag setto'Y’,

and the Z4OPEN_PARM. config.llkpath containing the path to the LACS“"™® data files. After the open call

you may check the state of LACS"™® via z4LLkIsDisabled ().

Note: During a z4LLkIsDisabled () call OS resources may be allocate so a call to z4close () must be
made in order to free the resources.

Syntax
#include “zip4.h”
int Z4FUNC z4LLkIsDisabled (void) ;

Input
None
Output
None
Return

TRUE - LACS“™® s disabled
FALSE - LACS“™® js enabled

Address Matching System APl User Guide » August 2011 63

Section 3: API Functions

Example
#include <stdio.h>
#include “zip4.h”

void main(void)

Z40PEN_PARM OpenParm;
char szKey[32] = {0};
int iReturn = 0;

memset (&openparm, 0, sizeof (Z40PEN_PARM)) ;

/* Setting up paths */

OpenParm.config.addressl = “c:\\amsdata\\”;
OpenParm.config.addrindex :\\amsdata\\";
OpenParm.config.cdrom A\
OpenParm.config.citystate “c:\\amsdata\\”;
OpenParm.config.crossref “c:\\amsdata\\”;
OpenParm.config.system :\\amsdata\\”;

o
aa

OpenParm.config.llkpath "e:\\1llkdata\\”;
OpenParm.config.dpvpath “c:\\dpvdata\\”;

o
a

/* open the USPS Address Matching System */
iReturn = z4opencfg(&OpenParm) ;

/* success */
if (iReturn == 0)

printf ("\nThe USPS Address Matching System Opened Successfully.");

/* LACSLink security violation */
else if (iReturn ==)

const char* szCode = z4LLkGetCode () ;

/* display error message an security code */

printf ("\nLACSLink has been disabled.");

printf ("\n\nSecurity code: %s", szCode) ;

printf ("\nTo enable LACSLink contact customer support with the
security") ;

printf ("\ncode above to receive the security key you need to
enable LACSLink\n") ;

/* prompt for security key */

printf ("\nEnter security key w/o formatting characters: ");
gets (szKey) ;

Address Matching System API User Guide « August 2011 64

Section 3: API Functions

/* verify security key */
if (z4LLkSetKey (szKey))

/* inform user of success */
printf ("\nThe key %s is valid and LACSLink is enabled.", szKey);

else

{

/* inform user of failure */
printf ("\nThe key %s is invalid and LACSLink is disabled.",
szKey) ;

/* other errors */

else
{
printf ("\nError Opening the USPS Address Matching System.");
}
/* close the USPS Address Matching System */
z4close () ;

Address Matching System API User Guide « August 2011 65

Section 3: API Functions

Disabling the LACS-"® Security Key

The z4LLkSetKey () function verifies the stop processing security key used for enabling LACS-"™® after a

LACS-™® security violation. A security key is an alphanumeric character string given to you by a customer care
representative in exchange for the security code given to you by z4LLkGetCode ().

Make a call to z4LLkSetKey () after a LACS-"™® security violation. In order to identify a LACS“"™® security
violation, a return value of 7 (seven) is given after making an open call. At that point you may call
z4LLkSetKey () with the security key provided to you by some customer care representative.

A status of TRUE (non-zero) is returned to identify success (LACS""™® is enabled) otherwise failure occurred
(LACS™® js disabled).

Note: z4LLkSetKey () must be called after a z4opencfg () function call. Even if the z4opencfg ()
function call fails to open AMS, it has put AMS in a state to be able to accept the key information.

Since this process causes AMS to allocate OS resources, the z4close () function call must be called in
orde to allow AMS to free those resources.

Syntax
#include “zip4.h”
int Z4FUNC z4LLkSetKey (const char* szKey) ;

Input

szKey A pointer to a null terminated alphanumeric character string
Output

None

Return

TRUE - The key update is successful and LACS-™ is enabled
FALSE - The key update failed and LACS""™ is disabled

Address Matching System API User Guide » August 2011 66

Section 3: API Functions

Example

#include <stdio.h>
#include “zip4.h”
void main(void)

Z40PEN_PARM OpenParm;
char szKey[32] {o};
int iReturn 0;

memset (&OpenParm, 0, sizeof (Z40PEN_PARM)) ;

/* Setting up paths */

OpenParm.config.addressl = “c:\\amsdata\\”;
OpenParm.config.addrindex :\\amsdata\\";
OpenParm.config.ctystate :\\amsdata\\";
OpenParm.config.crossref = “c:\\amsdata\\";
OpenParm.config.system “c:\\bin\\";
OpenParm.config.llkpath :\\1llkdata\\";
OpenParm.config.dpvpath “c:\\dpvdata\\”;

o
Qaa

o
a

/* open the USPS Address Matching System */
iReturn = z4opencfg(&OpenParm) ;

/* success */
if (iReturn == 0)

printf ("\nThe USPS Address Matching System Opened Successfully.");

/* LACSLink security violation */
else if (iReturn ==)

const char* szCode = z4LLkGetCode () ;

/* display error message an security code */

printf ("\nLACSLink has been disabled.");

printf ("\n\nSecurity code: %s", szCode) ;

printf ("\nTo enable LACSLink contact customer support with the
security") ;

printf ("\ncode above to receive the security key you need to
enable LACSLink\n");

/* prompt for security key */

printf ("\nEnter security key w/o formatting characters: ");
gets (szKey) ;

Address Matching System API User Guide « August 2011 67

Section 3: API Functions

/* verify security key */
if (z4LLkSetKey (szKey))

/* inform user of success */
printf ("\nThe key %s is valid and LACSLink is enabled.",
szKey) ;

else

{

/* inform user of failure */
printf ("\nThe key %s is invalid and LACSLink is disabled.",
szKey) ;

/* all other errors */

else
{
printf ("\nError Opening the USPS Address Matching System.");
}
/* close the USPS Address Matching System */
z4close () ;

Address Matching System APl User Guide » August 2011 68

Section 3: API Functions

SUITE"NK™ Database Date

The z4SLNKGetDate () function returns the date of the Suite="™™

character character string in the YYYYMMDD format.

database. The date is returned as an 8-byte

Syntax

#include “zip4.h”
const char* Z4FUNC z4SLNKGetDate (int 1iID) ;

Notes: The date string is null terminated and always returned unless the SUITES™™ library is not loaded correctly
or the database is not found. The return value is zero/null when the date string is not returned.

Input

iID A numerical value identifying a data table or -1 for entire database.

Output

None

Return

A pointer to a NULL terminated char array that contains the date associated with the table(s) in the database.
Format: YYYYMMDD.

Example

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include “zip4.h”

ZI1P4 PARM parm;
int main(int argc, char** argv)

Z40PEN_PARM openparm;

memset (&openparm, 0, sizeof (openparm)) ;

/* ... Populate openparm ... */
/* open the USPS Address Matching System */
if (z4opencfg(&openparm) != 0)

printf (“The USPS Address Matching System failed to open”) ;
/* Always call z4close() even on open failure */
z4close () ;

exit (5) ;

Address Matching System APl User Guide » August 2011 69

Section 3: API Functions

/* get datatbase date */
printf (“*SuitelLink database date: %s\n”, z4SLNKGetDate (-1));

/* load input address parameters */
memset (&parm, 0, sizeof (parm)) ;

strcpy (parm.iadl2, “ACME TOOL AND DIE”);/* Firm line */
strcpy (parm.iadl3, “~) ;/* Secondary or extra linex*/
strcpy (parm.iadll, “323 S 152ND ST”) ;/* Primary address line */
strcpy (parm.iprurb, “”) ;/* Puerto Rico specific x/
strcpy (parm.ictyi, “OMAHA, NE 68154);/* City, State, ZIP */

/* request address inquiry */
z4adring (&parm) ;

/* request SuitelLink inquiry */
z4SLNKQuery (&parm) ;

/* close The USPS Address Matching System */

z4close () ;
exit (0) ;

Address Matching System API User Guide « August 2011 70

Section 3: API Functions

SUITE""Y™ Error Code

Link™

The z4SLNKGetError() function retrieves the last error encountered during Suite processing.

Syntax

#include “zip4.h”
long Z4FUNC z4SLNKGetError (void) ;

Notes: This interface does not return AMS errors, it only returns errors pertaining strictly to SUITEX"™ ™, The
purpose of this function is to aid in debugging and logging issues.

Input

None

Output

None

Return

Integer value identifying the last error

Example

See example code for Suite"™ Error Message (page 72)

Address Matching System API User Guide « August 2011 71

Section 3: API Functions

SUITE""™™ Error Message

Link™

The z4SLNKGetErrorMsg () function retrieves the last error encountered during a Suite lookup.

Syntax

#include “zip4.h”
const char* Z4FUNC z4SLNKGetErrorMsg (void) ;

Notes: This is a null terminated ASCII string and it may not be formatted enough for user feedback.

Input

None

Output

None

Return

A pointer to a Null terminated char array containing a text description of the last error.

Example

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include “zip4.h”

ZIP4_ PARM parm;
int main(int argc, char** argv)

Z40PEN_PARM openparm;

memset (&openparm, 0, sizeof (openparm)) ;

/* ... Populate openparm ... */
/* open the USPS Address Matching System */
if (z4opencfg(&openparm) != 0)

printf (“The USPS Address Matching System failed to open”) ;

/* SuiteLink Error */
printf (“Error %d: %$s\n”, z4SLNKGetError (),
z4SLNKGetErrorMsg ());

/* Always call z4close() even on open failure */
z4close () ;
exit (5);

}

/* load input address parameters */

Address Matching System API User Guide « August 2011 72

Section 3: API Functions

memset (&parm, 0, sizeof (parm)) ;

(
strcpy (parm.iadl2, “ACME TOOL AND DIE”);/* Firm line */
strepy (parm.iadl3, “”) ;/* Secondary or extra linex/
strepy (parm.iadll, “323 S 152ND ST”) ;/* Primary address line */
strepy (parm. iprurb, “”) ;/* Puerto Rico specific */
strcpy (parm.ictyi, “OMAHA, NE 68154);/* City, State, ZIP */

/* request address inquiry */
z4adring (&parm) ;

/* request SuiteLink inquiry */
z4SLNKQuery (&parm) ;

/* if a response found (either single or default) */

if (parm.retcc==24 SINGLE || parm.retcc==Z4 DEFAULT)
printf (“Found response.\n”);
printf (“*Name: $s\n”, parm.dadl2) ;
printf (“*S Addr: %s\n”, parm.dadl3) ;
printf (“Addr: $s\n”, parm.dadll) ;
printf (“PRUrb: $s\n”, parm.dprurb) ;
printf (“City: $s\n”, parm.dctya) ;
printf (“ST: $s\n”, parm.dstaa) ;
printf (“ZIP: $s\n”, parm.zipc);
printf (“Addon: %s\n”, parm.addon) ;
printf (“DPBC: %s\n”, parm.dpbc) ;
printf (“Pre Dir: %s\n”, parm.stack[O].pre_dir);{
printf (“Str Name: $s\n”, parm.stack[0].str name) ;
printf (“*Suffix: %s\n”, parm.stack[0] .suffix) ;
printf (“Post Dir: $s\n”, parm.stack[0] .post dir);
printf (“*Lacs Ind: $c\n”, parm.stack[0].lacs status);

}

/* close The USPS Address Matching System */
z4close () ;

exit (0)

Address Matching System API User Guide « August 2011 73

Section 3: API Functions

SUITE""™™ Query

The z4SLNKQuery () function should be used to correct missing seconday information when a call from
z4adring () returns a default (32) response.

Syntax

#include “zip4.h”
int Z4FUNC z4SLNKQuery (ZIP4 PARM* pPZip4) ;

Notes: If successful the parm.dad11 address line will contain the secondary information found during the

query.

The parm. stelnkfoot will contain one of the following values to identify the status of the query.
A - Confirmed entire address

“00” - Could not confirm address

- Address was not submitted for confirmation

Input

pZip4 A pointer to a ZIP4_PARM structure that contains the address to perform the query on. The contents
of the structure will be altered to contain the secondary information for the input address.

Output

None

Return

TRUE - The address was confirmed
FALSE - The address was not confirmed.

Example

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include “zip4.h”

ZIP4_PARM parm;
int main(int argc, char** argv)

Z4OPEN_PARM openparm;

memset (&openparm, 0, sizeof (openparm)) ;

/* ... Populate openparm ... */

/* open the USPS Address Matching System */
if (z4opencfg(&openparm) != 0)

{

printf (“The USPS Address Matching System failed to open”);
/* Always call z4close() even on open failure */
z4close () ;

exit (5) ;

/* load input address parameters */

Address Matching System API User Guide * August 2011 74

Section 3: API Functions

memset (&parm, 0, sizeof (parm)) ;

(
strcpy (parm.iadl2, “ACME TOOL AND DIE”);/* Firm line */
strepy (parm.iadl3, “”) ;/* Secondary or extra linex/
strepy (parm.iadll, “323 S 152ND ST”) ;/* Primary address line */
strepy (parm. iprurb, “”) ;/* Puerto Rico specific */
strcpy (parm.ictyi, “OMAHA, NE 68154);/* City, State, ZIP */

/* request address inquiry */
z4adring (&parm) ;

/* request SuiteLink inquiry */
z4SLNKQuery (&parm) ;

/* if a response found (either single or default) */

if (parm.retcc==24 SINGLE || parm.retcc==Z4 DEFAULT)
printf (“Found response.\n”);
printf (“*Name: $s\n”, parm.dadl2) ;
printf (%S Addr: %s\n”, parm.dadl3) ;
printf (“Addr: $s\n”, parm.dadll) ;
printf (“PRUrb: $s\n”, parm.dprurb) ;
printf (“City: $s\n”, parm.dctya) ;
printf (“ST: $s\n”, parm.dstaa) ;
printf (“zIP: $s\n”, parm.zipc);
printf (“Addon: %$s\n”, parm.addon) ;
printf (“DPBC: %$s\n”, parm.dpbc) ;
printf (“Pre Dir: %s\n”, parm.stack[O].pre_dir);{
printf (“Str Name: $s\n”, parm.stack[0].str name) ;
printf (“*Suffix: %s\n”, parm.stack[0].suffix) ;
printf (“Post Dir: $s\n”, parm.stack[0] .post dir) ;
printf (“Lacs Ind: $c\n”, parm.stack[0].lacs status);

}

/* close The USPS Address Matching System */
z4close () ;

exit (0)

Address Matching System API User Guide * August 2011 75

Section 3: API Functions

Abbreviated Street Address Query

The z42BSQuery () function performs an abbreviated address lookup on a returned z4adring () address. This
optional call identifies a street address line exceeding thirty (30) characters and returns a thirty (30) character or less
abbreviation.

Syntax

#include “zip4.h”
int Z4FUNC z4ABSQuery (ZIP4_ PARM* pZip4, TAbbrSt* pAbbrSt);

Input

pZip4 A pointer to the ZIP4 PARM that was used during the preceding z4adring () call.
pAbbrSt A pointer to an empty TAbbrSt structure where the output will be stored.

Output

pAbbrst will be populated with the abbreviated street information.

Return

TRUE - A successful lookup was completed.
FALSE — An abbreviated address lookup was unsuccessful.

Example

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include “zip4.h”

ZIP4_ PARM parm;
TAbbrSt pStreet [1];

int main(int argc, char** argv)

Z40PEN_PARM openparm;

memset (&openparm, 0, sizeof (openparm)) ;

/* ... Populate openparm ... */
/* open the USPS Address Matching System */
if (z4opencfg(&openparm) != 0)

printf (“The USPS Address Matching System failed to open”) ;
/* Always call z4close() even on open failure */
z4close () ;

exit (5) ;

}

/* load input address parameters */
memset (&parm, 0, sizeof (parm)) ;

strepy (parm.iadl2, “ACME TOOL AND DIE”);/* Firm line */
strcpy (parm.iadl3, “UNIT 1”) ;/* Secondary or extra linex*/
strepy (parm.iadll, “100 TYNGSBOROUGH BUSINESS PK DR”); /* Primary */
strepy (parm.iprurb, “”) ;/* Puerto Rico specific */
strcpy (parm.ictyi, “TYNGSBORO, MA 01879”);/* City, State, ZIP */

Address Matching System API User Guide « August 2011 76

Section 3: API Functions

/* request address inquiry */
z4adring (&parm) ;

/* request abbrivated iquiry */
z4ABSQuery (&parm, pStreet) ;

/* if a response found (either single or default) */

if (parm.retcc==24 SINGLE || parm.retcc==Z4 DEFAULT)
printf (“Found response.\n”)
printf (“Name: $s\n”, parm.dadl2);
printf (*S Addr: $s\n”, parm.dadl3l);
printf (“Addr: %$s\n”, pStreet->szAddress) ;
printf (“PRUrb: $s\n”, parm.dprurb) ;
printf (“City: %s\n”, parm.dctya) ;
printf (“ST: %s\n”, parm.dstaa) ;
printf (“zIP: $s\n”, parm.zipc);
printf (“Addon: %s\n”, parm.addon) ;
printf (“DPBC: %$s\n”, parm.dpbc) ;
printf (“Pre Dir: $s\n”, parm.stack[0] .pre dir) ,{
printf (“Str Name: $s\n”, parm.stack[0].str name) ;
printf (“*Suffix: $s\n”, parm.stack[0].suffix);
printf (“Post Dir: $s\n”, parm.stack[0] .post dir);
printf (“Lacs Ind: $c\n”, parm.stack[0] .lacs_status) ;

}

/* close The USPS Address Matching System */
z4close () ;

exit (0)

Address Matching System API User Guide * August 2011 77

Section 4: Footnote Flags, - - [Deleted: Section 4: Record Types

Section 4: Footnote Flags

A

ZIP CODE CORRECTED

The address was found to have a different 5-digit ZIP Code than given in the submitted list. The correct
ZIP Code is shown in the output address.

CITY /STATE SPELLING CORRECTED

The spelling of the city name and/or state abbreviation in the submitted address was found to be different
than the standard spelling. The standard spelling of the city name and state abbreviation are shown in the
output address.

INVALID CITY / STATE/ ZIP

The ZIP Code in the submitted address could not be found because neither a valid city, state, nor valid 5-
digit ZIP Code was present. It is also recommended that the requestor check the submitted address for
accuracy.

NO ZIP+4 ASSIGNED

This is a record listed by the United States Postal Service on the national ZIP+4 file as a non-deliverable
location. It is recommended that the requestor verify the accuracy of the submitted address.

ZIP CODE ASSIGNED FOR MULTIPLE RESPONSE

Multiple records were returned, but each shares the same 5-digit ZIP Code.

ADDRESS COULD NOT BE FOUND IN THE NATIONAL DIRECTORY FILE DATABASE
The address, exactly as submitted, could not be found in the city, state, or ZIP Code provided. It is also
recommended that the requestor check the submitted address for accuracy. For example, the street address

line may be abbreviated excessively and may not be fully recognizable.

INFORMATION IN FIRM LINE USED FOR MATCHING

Information in the firm line was determined to be a part of the address. It was moved out of the firm line
and incorporated into the address line.

MISSING SECONDARY NUMBER

ZIP+4 information indicates this address is a building. The address as submitted does not contain an
apartment/suite number. It is recommended that the requestor check the submitted address and add the
missing apartment or suite number to ensure the correct Delivery Point Barcode (DPBC).

INSUFFICIENT / INCORRECT ADDRESS DATA

More than one ZIP+4 Code was found to satisfy the address as submitted. The submitted address did not
contain sufficiently complete or correct data to determine a single ZIP+4 Code. It is recommended that the
requestor check the address for accuracy and completeness. For example, firm name, or institution name,
doctor’s name, suite number, apartment number, box number, floor number, etc. may be missing or
incorrect. Also pre-directional or post-directional indicators (North = N, South = S, East = E, West =W,
etc.) and/or street suffixes (Street = ST, Avenue = AVE, Road = RD, Circle = CIR, etc.) may be missing or
incorrect.

Address Matching System API User Guide * August 2011 78

Section 4: Footnote Flags, - - [Deleted: Section 4: Record Types

J DUAL ADDRESS
The input contained two addresses. For example: 123 MAIN ST PO BOX 99.

K MULTIPLE RESPONSE DUE TO CARDINAL RULE

CASS rule does not allow a match when the cardinal point of a directional changes more than 90%.

L ADDRESS COMPONENT CHANGED
An address component (i.e., directional or suffix only) was added, changed, or deleted in order to achieve a
match.

M STREET NAME CHANGED
The spelling of the street name was changed in order to achieve a match.

N ADDRESS STANDARDIZED
The delivery address was standardized. For example, if STREET was in the delivery address, the system
will return ST as its standard spelling.

O LOWEST +4 TIE-BREAKER
More than one ZIP+4 Code was found to satisfy the address as submitted. The lowest ZIP +4 addon may
be used to break the tie between the records.

P BETTER ADDRESS EXISTS
The delivery address is matchable, but is known by another (preferred) name. For example, in New York,
NY, AVENUE OF THE AMERICAS is also known as 6TH AVE. An inquiry using a delivery address of
55 AVE OF THE AMERICAS would be flagged with a Footnote Flag P.

Q UNIQUE ZIP CODE MATCH
Match to an address with a unique ZIP Code.

R NO MATCH DUE TO EWS
The delivery address is matchable, but the EWS file indicates that an exact match will be available soon.

S INCORRECT SECONDARY ADDRESS
The secondary information (i.e., floor, suite, apartment, or box number) does not match that on the national
Z1P+4 file. This secondary information, although present on the input address, was not valid in the range
found on the national ZIP+4 file.

T MULTIPLE RESPONSE DUE TO MAGNET STREET SYNDROME
The search resulted in a single response; however, the record matched was flagged as having magnet street
syndrome. “Whenever an input address has a single suffix word or a single directional word as the street
name, or whenever the ZIP+4 File records being matched to have a single suffix word or a single
directional word as the street name field, then an exact match between the street, suffix and/or post-
directional and the same components on the ZIP+4 File must occur before a match can be made. Adding,
changing or deleting a component from the input address to obtain a match to a ZIP+4 record will be
considered incorrect.” Instead of returning a “no match” in this situation a multiple response is returned to
allow access the candidate record.

U UNOFFICIAL POST OFFICE NAME
The city or post office name in the submitted address is not recognized by the United States Postal Service
as an official last line name (preferred city name), and is not acceptable as an alternate name. This does
denote an error and the preferred city name will be provided as output.

Address Matching System API User Guide * August 2011 79

Section 4: Footnote Flags, - - [Deleted: Section 4: Record Types

\Y% UNVERIFIABLE CITY /STATE
The city and state in the submitted address could not be verified as corresponding to the given 5-digit ZIP
Code. This comment does not necessarily denote an error; however, it is recommended that the requestor
check the city and state in the submitted address for accuracy.

W INVALID DELIVERY ADDRESS
The input address record contains a delivery address other than a PO BOX, General Delivery, or
Postmaster with a 5-digit ZIP Code that is identified as a “small town default.” The United States Postal
Service does not provide street delivery for this ZIP Code. The United States Postal Service requires use of
a PO BOX, General Delivery, or Postmaster for delivery within this ZIP Code.

X UNIQUE ZIP CODE GENERATED
Default match inside a unique ZIP Code.

Y MILITARY MATCH
Match made to a record with a military ZIP Code.

z MATCH MADE USING THE ZIPMOVE PRODUCT DATA
The ZIPMOVE product shows which ZIP + 4 records have moved from one ZIP Code to another. If an
input address matches to a ZIP + 4 record which the ZIPMOVE product indicates as having moved, the
search is performed again in the new ZIP Code.

Address Matching System API User Guide » August 2011 80

Section 5: Record Types

Section 5: Record Types

F FIRM

This is a match to a Firm Record, which is the finest level of match available for an address.
G GENERAL DELIVERY

This is a match to a General Delivery record.

H BUILDING / APARTMENT

This is a match to a Building or Apartment record.
P POST OFFICE BOX

This is a match to a Post Office Box.
R RURAL ROUTE or HIGHWAY CONTRACT

This is a match to either a Rural Route or a Highway Contract record, both of which may have
associated Box Number ranges.

S STREET RECORD
This is a match to a Street record containing a valid primary number range.

Address Matching System API User Guide * August 2011 81

Section 6: Return Codes

Section 6: Return Codes

10

11

12

13

21

22

31

32

INVALID DUAL ADDRESS

Information presented could not be processed in current format. Corrective action is needed. Be sure that
the address line components are correct. For example, the input address line may contain more than one
delivery address.

INVALID CITY/ST/ZIP

The ZIP Code in the submitted address could not be found because neither a valid city, state, nor valid 5-
digit ZIP Code was present. Corrective action is needed. It is also recommended that the requestor check
the submitted address for accuracy.

INVALID STATE

The state in the submitted address is invalid. Corrective action is needed. It is also recommended that the
requestor check the submitted address for accuracy.

INVALID CITY

The city in the submitted address is invalid. Corrective action is needed. It is also recommended that the
requestor check the submitted address for accuracy.

NOT FOUND

The address, exactly as submitted, could not be found in the national ZIP+4 file. It is recommended that the
requestor check the submitted address for accuracy. For example, the street address line may be abbreviated
excessively and may not be fully recognizable.

MULTIPLE RESPONSE

More than one ZIP+4 Code was found to satisfy the address submitted. The submitted address did not
contain sufficiently complete or correct data to determine a single ZIP+4 Code. It is recommended that the
requestor check the address for accuracy and completeness. Address elements may be missing

EXACT MATCH.

Single response based on input information. No corrective action is needed since an exact match was found
in the national ZIP+4 file.

DEFAULT MATCH

A match was made to a default record in the national ZIP+4 file. A more specific match may be available if
a secondary number (i.e., apartment, suite, etc.) exists.

Address Matching System APl User Guide » August 2011 82

Appendix A: Interface Definition

Appendix A: Interface Definition

#ifndef ZzIP4 H /* avoid
#define ZIP4_H

redefinition */

/***********;**/

/* This record describes an address record. The record format is the same as
/* the USPS ZIP+4 File. Please see the USPS Address Information Products

/* Technical Guide for information on

this record.

/* NOTE: All ‘char’ array fields contain an extra byte (+1) for the null

/* terminator.

*/
*/
*/
*/
*/

/**/

typedef struct

char detail code; /* copyright detail code
char zip code[5+1]; /* zip code
char wupdate key[10+1]; /* update key number
char action_code; /* action code
char rec_type; /* record type
char carr rt[4+1]; /* carrier route
char pre dir[2+1]; /* pre-direction abbrev
char str name[28+1]; /* street name
char suffix[4+1]; /* suffix abbrev
char post _dir[2+1]; /* post-direction abbrev
char prim low[10+1]; /* primary low range
char prim high[10+1]; /* primary high range
char prim code; /* primary even odd code
char sec name[40+1]; /* bldg or firm name
char unit[4+1]; /* secondary abbreviation
char sec low[8+1]; /* secondary low range
char sec_high[8+1]; /* secondary high range
char sec_code; /* secondary even odd code
char addon low[4+1]; /* add on low
char addon_high[4+1]; /* add on high
char base_alt code; /* base alternate code
char lacs_status; /* LACS converted status
char financel[6+1]; /* finance code
char state_abbrev[2+1]; /* state abbreviation (not filled)
char county nol[3+1]; /* county number
char congress_dist[2+1]; /* congressional district
char municipality[6+1]; /* municip. city/state key (not filled)
char wurbanization[6+1]; /* urb. city/state key
char last line[6+1]; /* last line city/state key
} ADDR_REC;
/* NOTE: The GovtBldgInd (Government Building Indicator) field is not
/* available in the ADDR_REC structure.

Address Matching System API User Guide « August 2011

83

Appendix A: Interface Definition

/***/

/* This record describes a city/state record. The record format is the same */
/* as the USPS City State File. Please see the USPS Address Information */
/* Products Technical Guide for information on this record. */
/* NOTE: All ‘char’ array fields contain an extra byte (+1) for the null */
/* terminator. *

/***/

typedef struct

char detail code; /* copyright detail code */
char zip code[5+1]; /* zip code */
char city keyl[6+1]; /* city/state key */
char zip class_code; /* zip classification code */
/* blank = non-unique zip */
/* M=APO/FPO military zip */
/* P=PO BOX zip */
/* U=Unique zip */
char city name[28+1]; /* city/state name */
char «city abbrev[13+1]; /* city/state name abbrev */
char facility cd; /* facility code */
/* A=Airport mail facility */
/* B=Branch */
/* C=Community post office */
/* D=Area distrib. center */
/* E=Sect. center facility */
/* F=General distrib. center */
/* G=General mail facility */
/* K=Bulk mail center */
/* M=Money order unit */
/* N=Non-postal name */
/* community name, */
/* former postal facility, */
/* or place name */
/* P=Post office */
/* S=Station */
/* U=Urbanization */
char mailing name ind; /* mailing name indicator */
/* Y=Mailing name */
/* N=Non-mailing name */
char last_line num[6+1]; /* preferred last line key */
char 1last line name[28+1]; /* preferred city name */

Address Matching System API User Guide « August 2011 84

Appendix A: Interface Definition

char city delv_ind; /* city delivery indicator */
/* Y=0Office has city delivery */
/* carrier routes */
/* N=Office does not have city */
/* delivery carrier routes */
char auto_zone_ ind; /* automated zone indicator */
/* A=CR Sort Rates Apply */
/* Merge Allowed */
/* B=CR Sort Rates Apply x/
/* Merge Not Allowed */
/* C=CR Sort Rates Do Not Apply */
/* Merge Allowed */
/* D=CR Sort Rates Do Not Apply */
/* Merge Not Allowed */
char wunique zip ind; /* unique zip name indicator */
/* Y=Unique zip name */
/* blank=not applicable */
char financel6+1]; /* finance code */
char state abbrev[2+1]; /* state abbreviation */
char county nol[3+1]; /* county number */
char county name[25+1]; /* county name */
} CITY REC;

/***/

/* Parameter list for z4adring() and z4xrfing() calls. Reserved fields are */
/* for future use, do not access these fields. Size of this record can not */
/* be changed. */

/* NOTE: Only fields containing +1 in the length are null terminated. */
/***/

typedef struct

Jxrkkkkkkkinput datakkkkkkkkkkkkkkkkk /

char rsvdo[4]; /* reserve fore future use */
char 1adll[50+1]; /* input delivery address */
char iadl2[50+1]; /* input firm name */
char ictyi[50+1]; /* input city */
char istail[2+1]; /* input state */
char izipc[10+1]; /* input ZIP+4 code */
char iprurb[28+1]; /* input urbanization name */
char 1adl13[50+1]; /* input second address line */
char 1ddpvi11[12+1]; /* reserved for future use */
char rsvdl|[85]; /* reserved for future use */

[rxxxkxxkkkreturned data *xkFkxkkkkxxk /

char dadl3[50+1 /* standardized 2nd delivery address*/

[1
char dadll1[50+1]; /* standardized delivery address */
char dadl2[50+1]; /* standardized firm name */
char dlast[50+1]; /* standardized city/state/zip */
char dprurb[28+1]; /* output PR urbanization name */
char dctys[28+1]; /* main post office city */
char dstas[2+1]; /* main post office state */
char dectyal28+1]; /* standardized city */
char abcty[13+1]; /* standardized city abbreviation */
char dstaal2+1]; /* standardized state */
char zipc[5+1]; /* 5-digit zip code */
char addon[4+1]; /* ZIP+4 addon code */
char dpbc[3+1]; /* delivery point bar code */
char cris[4+1]; /* carrier route */
char county[3+1]; /* FIPS county code */
short respn; /* number of returned responses */
char retcc; /* return code */
char adrkeyl[12]; /* address key (for indexing) */
char auto_zone ind; /* A, B, C or D */
char elot num[4+1]; /* eLOT Number */

Address Matching System API User Guide « August 2011 85

Appendix A: Interface Definition

char elot code; /* eLOT Ascending/Descending Flag */
char 1llk rcl[2+1]; /* LACS Link Return Code */
char 1lk ind; /* LACS Link Indicator */
char misc([128+1]; /* line for unused input data */
char rsvd2[20]; /* Reserved for Future Use */

/********* parsed input data*********/

char ppnum([10+1]; /* Primary Number */
char psnum[8+1]; /* Secondary Number */
char prote[3+1]; /* Rural Route Number */
char punit[4+1]; /* Secondary Number Unit */
char pprel[2+1]; /* First or Left Pre-direction */
char ppre2[2+1]; /* Second or Right Pre-direction */
char psufl[4+1]; /* First or Left Suffix */
char psuf2[4+1]; /* Second or Right Suffix */
char ppstl[2+1]; /* First or Left Post-direction */
char ppst2[2+1]; /* Second or Right Post-direction */
char ppnam[28+1]; /* Primary Name */
char mpnum[10+1]; /* Matched primary number. */
char msnum[8+1]; /* Matched secondary number */
char pmb[3+1]; /* PMB Unit Designator */
char pmbnum[8+1]; /* PMB Number */
char mlevl; /* Reserved Use */
char footnotes[32+1]; /* Reserved for Future Use */
char stelnkfoot[3+1]; /* suite link footnote */
char punit2[4+1]; /* second or right Secondary Unit */
char psnum2[8+1]; /* second or right secondary number */
char rsvd3[10]; /* Reserved for future use */
struct { JRxxkkkkkkkkkkxk footnotegk*rkkkxkkxx /
char a; /* zip corrected */
char b; /* city/state corrected */
char c¢; /* invalid city/state/zip */
char d; /* no zip assigned */
char e; /* ZIP assigned for mult response */
char f£; /* no zip available */
char g; /* part of firm moved to address */

Address Matching System APl User Guide » August 2011 86

Appendix A: Interface Definition

char h; /* secondary number missing */
char 1i; /* insufficient/incorrect data */
char 73j; /* dual input */
char k; /* reserved for future use” */
char 1; /* del addr component add/del/chg */
char m; /* street name spelling changed */
char n; /* delivery addr was standardized */
char o; /* multi break tie with lowest +4 */
char p; /* better delivery addr exists */
char q; /* Unique ZIP Code */
char r; /* no match caused by EWS */
char s; /* invalid secondary number */
char ¢t; /* magnet street */
char wu; /* unofficial PO name */
char v; /* unverifiable city/state */
char w; /* small town default */
char x; /* unique ZIP Code generated */
char vy; /* Military Match */
char z; /* ZIP Move Match */
char £0; /* reserved for future use */
char f1; /* reserved for future use */
char £2; /* reserved for future use */
char f£3; /* reserved for future use */
char f£f4; /* reserved for future use */
char f£5; /* reserved for future use */
} foot;

ADDR REC stack[10]; [FxxFxFkxKkxkkxkrecord stackrxrkkxkxkkkxx /
char rsvd4 [194]; /* reserved for future use */

} ZIP4 PARM;

/**/

/* Parameter list for z4getzip() */
/* NOTE: Only fields containing +1 in the length are null terminated. */

/**/

typedef struct

char input cityst[50+1];
char output cityst[50+1];
char low_zipcode[5+1];
char high zipcode[5+1];
char finance num[6+1];

} GET_ZIPCODE_STRUCT;

Address Matching System API User Guide « August 2011 87

Appendix A: Interface Definition

/**/

/* ABBREVIATED STREET RECORD */
/* */
/* Parameter list for z4ABSQuerySTD() */
/* NOTE: Fields names with a leading "sz" are null terminated. */
/* */

/**/

typedef struct tagNationalDirectoryFileZip4DetailAbbreviated

char psDetailCode([1]; /* COPYRIGHT DETAIL CODE */
char szZipcode[6] ; /* ZIP CODE */
char szUpdateKey[11]; /* UPDATE KEY NUMBER */
char psActionCode[1]; /* ACTION CODE */
char psRecordType[1]; /* RECORD TYPE */
char szCarrierRt [5]; /* CARRIER ROUTE */
char szPreDir[3]; /* PRE-DIRECTIONAL ABBREVIATED */
char szStreetName [29]; /* STREET NAME */
char szSuffix[5]; /* SUFFIX ABBREVIATED */
char szPostDir[3]; /* POST-DIRECTIONAL ABBREVIATED */
char szPrimaryL[11]; /* PRIMARY LOW RANGE */
char szPrimaryH[11]; /* PRIMARY HIGH RANGE */
char psPrimarCode [1]; /* EVEN/ODD/BOTH CODE (PRIMARY NUMBER) */
char szFirm[41]; /* BUILDING/FIRM NAME */
char szUnit [5]; /* UNIT DESIGNATOR ABBREVIATED */
char szSecondaryL[9]; /* SECONDARY LOW RANGE */
char szSecondaryH[9]; /* SECONDARY HIGH RANGE */
char psSecondaryCode[1]; /* EVEN/ODD/BOTH CODE (SECONDARY NUMBER) */
char szAddonL[5] ; /* ADD ON LOW RANGE */
char szAddonHI[5]; /* ADD ON HIGH RANGE */
char psBaseAltCode[1]; /* BASE/ALTERNATE CODE */
char psLACS[1]; /* LACS CONVERTED STATUS */
char szFinancel[7]; /* FINANCE NUMBER */
char szState[3]; /* STATE ABBREVIATED (NOT FILLED) */
char szCountyNumber [4] ; /* COUNTY NUMBER */
char szCongressDist [3]; /* CONGRESSIONAL DISTRICT */
char szMunicipality[7]; /* MUNICIPALITY CITY/STATE KEY (NOT FILLED) */
char szUrbanization[7]; /* URBANIZATION CITY/STATE KEY */
char szLastLineKey[7]; /* LAST LINE CITY/STATE KEY */
char szAddress|[51]; /* STANDARDIZED DELIVERY ADDRESS */

} TAbbrSt, *TPAbbrsSt;

/***/

/* Error Codes for the iErrorCode variable inside the Z4 ERROR structure */
/***/

#define ERROR_FILE_OPEN 1 /* Error opening a file */
#define ERROR_FILE READ 2 /* Error reading a file */
#define ERROR_FILE WRITE 3 /* Error writing to a file */
#define ERROR_FILE_ FIND 4 /* Error finding a file */
#define ERROR_FILE_ EXPIRE 5 /* AMS library has expired */
#define ERROR FILE SYNC 6 /* AMS Database files out of sync */
#define ERROR_SECURITY 7 /* AMS Security Error */

Address Matching System APl User Guide » August 2011 88

Appendix A: Interface Definition

#define FILE_ID CONFIG 1 /* Configuration File */
#define FILE_ ID_ZADRFLE 2 /* zadrfle.dat */
#define FILE_ ID_ZADRFLENDX 3 /* zadrfle.idx */
#define FILE_ID_CTYSTATE 4
#define FILE_ID_CTYSTATENDX 5
#define FILE_ID_ZIPSFLE 6
#define FILE_ID_ZIP5FLENDX 7
#define FILE_ID_ZXREFDTL 8
#define FILE_ID_ELTRVFLE 9
#define FILE_ID_ELTRVFLENDX 10
#define FILE ID_EWS 11
#define FILE ID_SYSTEM 12
#define FILE_ID_ LIBRARY 13
#define FILE ID_ KEYMANLIB 14
#define FILE_ID_DATABASE 15
#define FILE_ID_LLK 16
#define FILE_ID_DPV 17
#define FILE_ID_FNSN 18
#define FILE_ID_STELNK 19
#define FILE_ID_ABBRST 20

/***/

/* Parameter list for z4geterror()

*/

/* NOTE: Only fields containing +1 in the length are null terminated */

/***/

typedef struct

int iErrorcode;

char strErrorMessage[100+1];

int iFileCode;

char strFileName[26+1];

char strDiagnostics[300+1];
} Z4 ERROR;

Error Code */
Error Message */
File Code */
File Name */
Diagnostic Message */

/**/

/*
/*

Paramter list for z4getenv ()

NOTE: Only fields containing +1 in length are null terminated

*/
*/

/**/

typedef struct

char strConfigFile[300+1];
char addressl1[300+1]; /*Contains the full path of the ZADRFLE.DAT file */
char addrindex[300+1]; /*Contains the full path of the ZADRFLE.NDX file */
char cdrom[300+1]; /*Contains the drive letter of the CD-ROM drive that*/
/*Contains the ZIP+4/carrier route data;may be blank*/
char citystate[300+1]; /*Contains the full path of the following files: */
/*CTYSTATE.DAT - CITYSTATE.NDX */
/*ZIPS5FLE.DAT - ZIPSFLE.NDX */
char crossref[300+1]; /*Contains full path of the ZXREFDTL.DAT file */
char system[300+1]; /*Contains the full path of the Z4CXLOG.DAT file */
char elot[300+1]; /*Contains the full path of the eltrvfle.dat file */
char elotindex[300=1]; /*Contains the full path of the eltrvfle.ndx file */
char 1llkpath[300+1] /*Contains the full path of the LACS Link files */
char ewspath[300+1]; /*Contains the full path of the ews.txt file */
char fnsnpath[300+1]; /*Contains the full path of the fnsn.* files */
char stelnkpath[300+1]; /* Path to STELNK.* files */
char abrstpath[300+1]; /* Path to ABBRST.* files */
char rsvdl[1208]; /* reserved for future use */
char stelnkflag; /* STELNK flag (Y enables else disabled) */
char abrstflag; /* ABBRST flag (Y enables else disabled) */
char ewsflag /* EWS flag (Y enables else disabled) */
char elotflag; /* eLot flag (Y enables else disabled) */
char 1llkflag; /* LACS Link flag (Y enables else disabled) */
char dpvflag; /* DPV flag (Y enables else disabled) */

Address Matching System API User Guide « August 2011

89

Appendix A: Interface Definition

}Z4 ENV;

Address Matching System API User Guide » August 2011 90

/**/

/* Parameter list for z4opencfg()
/* NOTE: Only fields containing +1 in the length are null terminated.

/**/

Appendix A: Interface Definition

/* Use of this structure will replace a physical copy of the configuration */
/* file on the hard drive

typedef stru

char
char
char

char

char
char
char
char
char
char
char
char
char*
char*
char
}CONFIG PARM

typedef stru

char
short

char

char
char
char
char
char
char
char
char
char
char
} Z4OPEN_PARM

ct

*addressl;
*addrindex;
*cdrom;

*citystate;

*crossref;
*system;
*elot;
*elotindex;
*1lkpath;
*ewspath;
*dpvpath
*fnsnpath;
stelnkpath;
abrstpath;
rsvd[116] ;

ct

rsvdl [50] ;
status;

*fname;

ewsflag;
elotflag;
llkflag;
dpvflag;
systemflag;
rtsw[15+1] ;

dpvtypeflag;

stelnkflag;
abrstflag;
rsvd2 [492] ;

/*Contains
/*Contains
/*Contains
/*contains
/*Contains

/*Contains
/*Contains
/*Contains
/*Contains
/*Contains
/*Contains
/*Contains
/*Contains
/* Path to
/* Path to

the
the
the
the
the
/*CTYSTATE .DAT -
/*ZIPSFILE.DAT -
the
the
the
the
the
the
the
the
the
the

ZIP5FLE.
full path
full path
full path
full path
full path
full path
full path
full path

NDX
of
of
of
of

/* reserved for future use

/*reserved for future use
/*1 - Used value point to by fname

/*2 - Used values in CONFIG_PARM

/*9 - No values found. Search for z4config.dat

/*pointer to a
/*contains the
/*config file.
/*or NULL then
/*is evaluated
CONFIG PARM config;/*Contains the

/*Y Enabled
/*Y Enables
/*Y Enables
/*Y Enables
/*Indicates
/* Internal
/*
/*
/*
/*

the
the
the
the
the
the
the
the

suite link files
abbreviated street name files

full path of the ZADRFLE.DAT file
full path of the ZADRFLE.NDX file
drive letter of the CD-ROM drive that*/
ZIP+4/carrier route data;may be blank¥*/
full path of the following files:
CTYSTATE .NDX

ZXREFDTL.DAT file
ZACXLOG.DAT file
ELTRVFLE.DAT file
ELTRVFLE.ND file
LACS Link files
EWS.TXT file

dpv files

fnsn.* files

NULL terminated string that
full path and filename for a custom
If fname contains a leading space
it is ignored and the CONFIG_PARM
for path names
path name for the config file

EWS else Disable EWS

LOT else Disable eLOT

LACS Link else disable LACS Link
DPV else disable DPV

open option
use

Future use
Y Enables STELNK else Disable STELNK
Y Enables ABRST else Disable ABRST

reserved for future use

Address Matching System API User Guide « August 2011

91

*/

*/
*/

*/

Appendix A: Interface Definition

/**/

/*Z40OPEN PARM.status values for z4opencfg() */
/**/

#define Z4 FNAME 1 /* Used the value in fname as the path and filename
#define Z4 CONFIG 2 /* Used the paths in the CONFIG_PARM structure
#define Z4 SEARCH 9 /* Used neither, searched for z4config.dat
/**/
/* Return Codes for z4adring() and z4xrfing() calls */
/**/
#define Z4 INVADDR 10 /* invalid address */
#define Z4 INVZIP 11 /* invalid ZIP Code */
#define Z4 INVSTATE 12 /* invalid state code */
#define Z4 INVCITY 13 /* invalid city */
#define Z4 NOTFND 21 /* address not found */
#define Z4 MULTIPLE 22 /* multiple response - no default */
#define Z4 SINGLE 31 /* single response - exact match */
#define Z4 DEFAULT 32 /* default response */

/***/

/* Function prototypes for the ZIP+4 retrieval engine. */
/***/
#if defined(0S2_32)

#define Z4FUNC

#elif defined (WIN32)

#define Z4FUNC _cdecl

#elif defined(WINDOWS) || defined(WINDLL)

#define Z4FUNC _ far _ pascal __ export

#elif defined (0S2)

#define Z4FUNC far pascal loadds _export

#elif defined(MAC)

#define Z4FUNC

#elif defined(ANSI_STRICT) || defined(UNIX) || defined(I370)

#define Z4FUNC

#else

#define Z4FUNC _cdecl

#endif

int ZAFUNC z4remove (void) ; /* terminate the retrieval engine
int Z4AFUNC z4open (void) ; /* open the retrieval engine for use
int Z4AFUNC z4opencfg (Z40PEN PARM *);/*open with custom parameters

int Z4FUNC z4close (void) ; /* close the retrieval engine

int Z4FUNC z4abort (void) ; /* abort the current inquiry

int Z4FUNC z4adring(ZIP4_PARM *);
int Z4FUNC z4scroll (ZIP4 PARM ¥*);

int Z4FUNC z4adrkey (ZIP4 PARM *);

int Z4FUNC z4xrfing(ZIP4 PARM *); /* nine digit cross reference inquiry
int Z4AFUNC z4xrfingll (ZIP4 PARM*);/* eleven digit cross reference inquiry
int ZAFUNC z4adrstd(ZIP4 PARM *, int); /* address standardization

/* address inquiry
/* address inquiry
/* address key (for indexing)

® — — — —

Address Matching System APl User Guide » August 2011 92

*/

*/

*/

Appendix A: Interface Definition

int Z4FUNC z4ctyget
int Z4FUNC z4ctynxt

CITY REC *, void *);/* get first city for a state */
CITY REC *); /* get next city for a state */
int Z4FUNC z4adrget (ADDR_REC *, void *);/* get first address for a fin. no */
int Z4FUNC z4adrnxt (ADDR_REC *) ; /* get next address for a fin. no */
int ZAFUNC z4adrprv (ADDR_REC *); /* get previous addrss for a fin. no*/

int ZAFUNC z4date (char *); /* get date of ZIP+4 database */
int Z4AFUNC z4GetDataExpireDays (void) ; /* number of days until data expire */
int Z4AFUNC z4GetCodeExpireDays (void) ; /* number of days until code expire */
int Z4FUNC z4dexpire (void) ; /* Deprecated. Use GetDataExpireDays() */
int Z4FUNC z4getzip (GET_ZIPCODE STRUCT*);/* get zip code range for cityst */
int Z4FUNC z4ver (char *); /* get the version of the API code */
int Z4FUNC z4geterror (Z4_ERROR *); /* get the last error msg and code */
int Z4FUNC z4getenv (Z4_ENV *); /* get the environment for AMS */
int Z4AFUNC z41lline (ZIP4 PARM *, char *);/* Validate Last Line */

const char* Z4FUNC z4LLkGetKey (void) ;
int Z4FUNC z4LLkIsDisabled (void) ;
int ZAFUNC z4LLkSetKey (const char* szKey) ;

const char* Z4FUNC z4SLNKGetDate (int) ; /* Gets date associated with a table
long Z4FUNC z4SLNKGetError (void) ; /* Suite Link error code

const char* Z4FUNC z4SLNKGetErrorMsg(void) ;/* Suite Link error message

int Z4FUNC z4SLNKQuery (ZIP4 PARM¥*);/* Performs a Suite Link lookup

int Z4FUNC z4ABSQuery (ZIP4 PARM*, TAbbrSt*); /* Performs abbreviated

street address lookup */

#endif /* ZIP4 H */

Address Matching System APl User Guide » August 2011 93

Appendix B: GDEV Application

Appendix B: GDEV Application

GDEV is a GUI Windows application that provides the capability to unencrypt any of the developer kits from the
AMS disc.

This application is located on the AMS disc in the dev_kits sub-directory. (gdev.exe)

If GDEV is launched directly from the disc it will automatically load information from that disc. Otherwise, GDEV
will not display any information and you will have to manually select a DEV_KITS directory.

2 gdev - AMS File Extraction U o] 3

Eile Wiew Help

DEY_KITS directon:

| L]

Platfarm: Select Files:

I jv

Customer |0:

Destination Directary:

| L

™| Qwenrite Existing Files Extract |
Ready MM [

Select “File->Select DEV_KIT directory” to tell GDEV where the developer Kits are located.
Select the “Platform” that you want to unencrypt.

Select the file(s) that you want to unencrypt.

Enter your customer ID.

Enter or Select the directory where the unencrypted files should be placed.

Click the [Extract] button.

ok wnE

Note: If the “Destination Directory” already contains the selected files then you must also select the “Overwrite
Existing Files™ checkbox or the unencryption process will fail.

Address Matching System API User Guide « August 2011 94

Appendix C: DPV®

Appendix C: DPV®

The United States Postal Service® (USPS®) has developed a new technology product that will help mailers validate
the accuracy of their address information, right down to the physical delivery point. Mailers will be able to identify
individual addresses within a mailing list that are potentially undeliverable-as-addressed due to an addressing
deficiency. This new technology is now available through the current address matching API. Following is a layout
and example usage of the DPV®/DSF2® interface made available through the address matching API.

Error Values

Constants used to identify errors returned from z4DpvSetPath ():

#define
#define
#define
#define
#define
#define

ERROR_INVALID AMS STATUS

ERROR_INVALID DPV_HNDL

ERROR_UNKNOWN_DPV_ID

ERROR_LD LIBRARY FAIL
ERROR_OPEN_DPVTBIL, FAIL

ERROR_INVALID MATCH LVL

Error Codes

-1
-2
-4
-5
-6
-7

Constants used to identify dpv errors returned from z4GetLastErrorCode ():

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

Address Matching System API User Guide « August 2011

SUCCESSFUL_DPV
UNDEFINED_DPV
INVALID HND DPV
INVALID ID DPV
NULL VALUE DPV
ACCESS DENIED DPV
OPEN_FAILED DPV
READ FAILED DPV
WRITE_FAILED DPV
SEEK_FAILED_DPV
UNAVAILABLE_DATA DPV
LOW_MEMORY DPV
EXPIRATION DPV
SYNCHRONIZE DPV
LIST DPV

ENV_DPV

INSYNCH DPV
LIB_COMPAT DPV
LIB_LOAD DPV
SECURITY_KEY DPV
CONFIGURED DBV

WoOJOUTd WNEREO

NO ERROR)

UNKNOWN ERROR)

INVALID HANDLE)

UNKNOWN ID FOR THE OPERATION)
ENCOUNTER A NULL VALUE)

ACCESS ATTEMPT ON DEVICE DENIED)
OPEN ATTEMPT ON DEVICE FAILED)

READ ATTEMPT ON DEVICE FAILED)

WRITE ATTEMPT TO DEVICE FAILED)

SEEK ATTEMPT ON DEVICE FAILED)
MISSING DATA NEEDED FOR OPERATION)
CAN NOT ALLOCATE ENOUGH MEMORY)

DATA AND LIBRARY ARE NOT COMPATIBLE)
DPV DATABASE TABLES NOT SYNCHRONIZED)
DETECTED ADDRESS LIST CREATION)
FAILED TO ALLOCATE INITIAL ENVIRONMENT)
AMS AND DPV TABLES NOT SYNCHRONIZED)
FOUND AN INCOMPATIBLE DPV LIBRARY)
FAILED TO LOAD DPV LIBRARY)
VIOLATION - SECURITY KEY GENERATED)
MISSING DATA TABLE(S))

95

Appendix C: DPV®

Database Tables

Below is a description of the tables used by DPV®:

dphe.hsa - contains all delivery points (required).

dphe.hsh - contains business delivery points (DSF2).

dphe.hsc - contains CMRA delivery points.

dphe.hsd - contains drop site delivery points (DSF2).

dphe.hsf - corrects errors in the dphe.hsa table (required).

dphe.hst - contains throwback delivery points (DSF2).

dphe.hss - contains seasonal delivery points (DSF2).

dphe.hsv - contains vacant delivery points.

dphe.hsl - contains lacs delivery points (DSF2).

dphe.hsk - contains drop counts for HSC and HSD tables (DSF2).
dphe.hs1 - contains curb delivery type delivery points (DSF2).

dphe.hs2 - contains NDCBU delivery type delivery points (DSF2).
dphe.hs3 - contains centralized delivery type delivery points (DSF2).
dphe.hs4 - contains other/doorslot delivery type delivery points (DSF2).
dphe.hsx - contains nostat delivery points.

Icd - resolves ZIP-codes to a common base ZIP-code (required).
lcd.nxd - used to maximize the performance of the Icd table (required).

Constants used to identify the above tables:

#define HSA DPV 0 (dphe.hsa)
#define HSB_DPV 1 (dphe.hsb)
#define HSC_DPV 2 (dphe.hsc)
#define HSD DPV 3 (dphe.hsd)
#define HSF DPV 4 (dphe.hsf)
#define HST DPV 5 (dphe.hst)
#define HSS DPV 6 (dphe.hss)
#define HSV_DPV 7 (dphe.hsv)
#define HSL_DPV 8 (dphe.hsl)
#define HSK DPV 9 (dphe .hsk)
#define HS1 DPV 10 (dphe.hs1)
#define HS2 DPV 11 (dphe.hs2)
#define HS3_DPV 12 (dphe.hs3)
#define HS4 DPV 13 (dphe.hs4)
#define HSX DPV 14 (dphe.hsx)
#define LCDNDX DPV 16 (lcd.ndx)
#define LCDFILE_DPV 17 (lcd)

Database Table Options

Constants used to identify table options for z4DpvIsOptions () and z4DpvSetOptions ():

#define RAMLOAD DPV 8 (Load table into RAM)

Address Matching System APl User Guide » August 2011 96

Appendix C: DPV®

Data Types

typedef struct tagDeliveryPointValidationParameter

char szAddress [51 + 1]; /* DELIVERY ADDRESS LINE (OPTIONAL) */
char szPrimary [10 + 1]; /* PRIMARY NUMBER */
char szUnit [4 + 1]; /* UNIT DESIGNATOR */
char szSecondary[8 + 1]; /* SECONARY NUMBER */
char szZip5 [5 + 1]; /* 5 DIGIT ZIPCODE */
char szZip4 [4 + 1]; /* 4 DIGIT ADDON */
char szPMB [8 + 1]; /* PRIVATE MAIL BOX NUMBER */
char szRecType [1 + 1]; /* RECORD TYPE (F,H,P,R,S,G) */
char szMilitary [1 + 1]; /* Y = Military */
char szUnique [1+ 1]; /* Y = Unique */
char szRetCode [1 + 1]; /* AMS RETURN CODE (BINARY FIELD) */
/* 32 DEFAULT RESPONSE */
/* 31 EXACT MATCH */
/* 22 MULTIPLE RESPONSE */
/* 21 ADDRESS NOT FOUND */
/* 13 INVALID CITY */
/* 12 INVALID STATE */
/* 11 INVALID ZIP CODE */
/* 10 INVALID ADDRESS */

} TDPVParm, *TPDPVParm;

Address Matching System API User Guide « August 2011 97

Appendix C: DPV®

Interface Overview

Interface:

Description:

Input:
Output:

Note:

Interface:

Description:

Input:
Output:

Note:

Interface:

Description:

Input:
Output:

Note:

Interface:

Description:

Input:
Output:
Note:

Interface:

Description:

Input:
Output:
Note:

int ZAFUNC z4Dpv(TDPVParm* pDPV)

Provides a means of performing a DPV lookup without performing an address lookup.
TDPVParm structure that identifies the address to perform the DPV query on

integer with one of the following character values

Y - Confirmed entire address

‘N’ - Could not confirm address

'S' - Confirmed address by dropping secondary information

‘D' - Confirmed a hirise or box type address w/o secondary information

' - Address was not submitted for confirmation
One of these values is always returned.
The same DPV calls you would normally make after z4adring() can be made after z4Dpv().

int z4DpvGetCode(int iTablelD)

Provides the status of a lookup.

integer identifying database table

integer with one of the following character values

Y - Confirmed entire address

‘N' - Could not confirm address

'S' - Confirmed address by dropping secondary information

‘D' - Confirmed a hirise or box type address w/o secondary information

- Address was not submitted for confirmation
One of these values is always returned.

int z4DpvGetDIvryType(void)
Provides the delivery type of a lookup.

none
integer with one of the following character values
1 - Curb delivery type

2! - NDCBU delivery type

K - Centralized delivery type

‘4 - Other/doorslot delivery type

B - Address was not submitted for a delivery type lookup
One of the above values is always returned. This is a DSF2 interface call and is associated with the
HS1_DPV, HS2_DPV, HS3 DPV, and HS4_DPV tables.

const char* z4DpvGetDate(void)

Identifies the database used by DPV.

none

null terminated string formatted as MMDDYYYY

The date string is null terminated and always returned unless the zip4/dpv library is not loaded
correctly or the database is not found. The return value is zero/null when the date string is not
returned.

int z4DpvGetDropCnt(void)

Identifies the drop count associated with a lookup.

none

integer identifying drop count

The drop count returned is only valid when a lookup is a CMRA or a drop site for any
other situation a zero is returned. This is a DSF2 interface call and is associated with the
HSC_DPV, HSD_DPV, and HSK_DPV table.

Address Matching System API User Guide » August 2011 98

Interface:

Description:

Input:
Output:

Note:

Interface:

Description:

Input:
Output:
Note:

Interface:

Description:

Input:
Output:
Note:

Interface:

Description:

Input:
Output:
Note:

Interface:

Description:

Input:
Output:
Note:

Interface:

Description:

Input:
Output:

Appendix C: DPV®

const char* z4DpvGetFootnotes(void)

Provides the state of a lookup.

none

null terminated string with a combination of the following character pairs
"AA" - zip4 matched

"Al" - zip4 did not match

"BB" - HSA_DPV confirmed entire address

"CC" - HSA_DPV confirmed address by dropping secondary information

"F1" - Military match

"G1" - General deliver match

"N1" - HSA_DPV confirmed a hi-rise address w/o secondary information
"M1" - Primary number missing

"M3" - Primary number invalid

"P1" - Box number missing

"P3" - Box number invalid

"RR" - HSC_DPV confirmed address with PMB information

"R1" - HSC_DPV confirmed address without PMB information

"U1" - Unique ZIP code match

The footnote string is null terminated and always returned unless the zip4/dpv library is not loaded
correctly. The return value is zero/null when the footnote string is not returned.

const char* z4DpvGetKey (void)

Returns a security key as a result of a stop processing event.

none

null terminated string containing a security key

The security key is a null terminated alphanumeric string. This key is only returned when stop
processing occurs. This security key is used to obtain a second security key that becomes the input
of z4DpvSetKey() which verifies the second security key for validity and enables DPV if valid.

long z4GetLastErrorCode (void)

Provides the error codes of the last error to occur in DPV.

none

long integer value identifying the last error

This interface returns errors occurring within DPV. If an error occurs within AMS even as a result
of DPV® the error will not show up here. The purpose of this interface is more towards
debugging/logging.

const char* z4GetLastErrorMsg(void)

Text description of the error code return from z4GetLastErrorCode();

none

null terminated string containing a text description of the last error

This is a null terminated ASCII string and it may not be formatted enough for user feedback.

unsigned long z4DpvGetOptions(int ilD)

Provides a way to determine the option being used by DPV.

integer identifying database table

unsigned long integer identifying the currently set options for the specified table
Returns the options currently being used for a DPV table.

const char* z4DpvGetPathname(int ilD)

Provides the path and filename of a database table

integer identifying database table

null terminated string indicating path and filename of database table

Address Matching System API User Guide » August 2011 99

Interface:

Description:

Input:
Output:
Note:

Interface:

Description:

Input:
Output:

Note:

Interface:

Description:

Input:
Output:

Note:

Interface:

Description:

Input:
Output:

Note:

Interface:

Description:

Input:

Output:

Note:

Interface:

Description:

Input:

Output:

Note:

Appendix C: DPV®

const char* z4DpvGetVersion(void)

Identifies DPV® library version.

none

null terminated string formatted as Major.Minor.Micro.CassCycle

The alphanumeric version string (e.g. "3.01.01.G") is null terminated and always returned unless
the zip4/dpv library can not be. The return value is zero/null when the version string is not
returned.

Major - Major changes made to interface (not backwards compatible)
Minor - Additions made to interface (backwards compatible)
Micro - Internal changes made to library (backwards compatible)

Cass Cycle - Only used for identification purposes

int z4DpvlIsConfirmed(int iTablelD)

Identifies the status of a lookup

integer identifying the database table

integer identifying status (TRUE/FALSE)

TRUE - Confirmed address

FALSE - Could not confirmed address

FALSE equals zero and TRUE is not equal to zero

int z4DpvlsDataValid(int iTablelD)

Performs a checksum integrity check on database tables.
integer identifying the database table

integer identifying status (TRUE/FALSE)

TRUE - Good table

FALSE - Bad table

FALSE equals zero and TRUE is not equal to zero

int z4DpvlsDisabled(void)

Identifies the status of the DPV library

none

integer identifying status (TRUE/FALSE)

TRUE - Disable

FALSE - Enable

FALSE equals zero and TRUE is not equal to zero

int z4DpvlsDisabledEx(int bDPV)

Identifies the status of the DPV/DSF2 library
integer identifying library type (TRUE/FALSE)
TRUE -DPV®

FALSE - DSF2®

integer identifying status (TRUE/FALSE)

TRUE - Disable

FALSE - Enable

FALSE equals zero and TRUE is not equal to zero

int z4DpvlIsOptions(int ilD, unsigned long iOption)

Identifies option(s) currently inuse by DPV

integer identifying database table

integer identifying option(s) to check for

integer identifying state (TRUE/FALSE)

TRUE - Option(s) used

FALSE - Option(s) not used

FALSE equals zero and TRUE is not equal to zero. This call is only effective when used after an
AMS api open call.

Address Matching System API User Guide » August 2011 100

Interface:

Description:

Input:
Output:

Note:

Interface:

Description:

Input:
Output:

Note:

Interface:

Description:

Input:

Output:
Note:

Interface:

Description:

Input:

Output:

Note:

Appendix C: DPV®

int z4DpvResolveMultiResp(ZIP4_PARM* ext)

Attempts to resolve an address with a multiple response into a single response

pointer to a ZIP4_PARM structure with a multiple response result

integer identifying status (TRUE/FALSE)

TRUE - Resolved

FALSE - Unresolved

When an address lookup results in a multiple response call this interface to break the tie. This call
is only effective after a z4adring call.

int z4DpvSetKey(const char* szKey)

Accepts the security key used to enable DPV® after stop processing occurrs

null terminate string containg a security key

integer identifying the DPV® library status (TRUE/FALSE)

TRUE - Enabled

FALSE - Disabled

The input security key is a key obtain as a result of providing the security key from
z4DpvSetKey() to some customer care/tech support rep. Any formating characters should be
removed from the security key before calling this interface. DPV® will be enabled if the security
key is valid. This call is only effective when used after an AMS api open call.

void z4DpvSetOptions(int ilD, unsigned long iOption)

Provides control over the functionality of database tables

integer identifying database table

integer identifying option(s)

none

Options are only a suggestion. For example, if the option to load a table into RAM is set

the table is only loaded if there is enough memory. This call is only effective when used before an
AMS api open call.

int z4DpvSetPath(int iTablelD, char* pszPathname)
Updates the path and filename of a database table
integer identifying database table

null terminated string indicating path and filename of database table
integer value indicating the error status

0 - Success (found and opened table)

-1 - AMS is already open.

-2 - Failed creating DPV® environment

-3 - Internally failed to load DPV® interface

-4 - User specified an invalid TableID

-5 - Failed to load DPV® library

-6 - Failed to open table

This call must occur before any AMS api open call.

Address Matching System API User Guide « August 2011 101

Appendix C: DPV®

Notes

The DPV® interface is provided via the AMS API library. When building a DPV® application link only to the
AMS API library and not to the DPV® library. An example of a C/C++ compile for the linux platform is listed
below:

cc -0 sample.exe sample.o zip4_Inx.dll

You can not check individual delivery type tables. The delivery type tables function as a single table. When an
ID for a delivery type table is used for a DPV® lookup each delivery type table is checked until one confirms.
In order to reset errors z4close () must be called or if the error is corrected when a DPV® lookup is made
the error will be reset.

Whenever an attempt is made to open the AMS API library, a call to z4close () must be made in order to
release allocated resources. If the AMS API library fails to open you must still call z4close ().

When using DPV® it is possible for z4opencfg () to return values 4 or 5.

4 = AMS and DPV data tables are not within the same month. (Out of Sync error)

5 = A security violation has been detected. This occurs when AMS/DPV needs a security key or a DPV®
library can not be found. If an error code 5 is returned and z4DpvGetKey () does not return a security code
then a DPV® library is missing.

Address Matching System API User Guide » August 2011 102

Appendix C: DPV®

DPV® Sample
/***\
* INCLUDES

*

***/

#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <memory.h>
#include <string.h>
#include "zip4.h"

#include "z4dpv.h"

/) ok ok ke ok ok ok ok sk ok
* MACROS

*
hokkkkkkkkkkkhkkkkhkkkhkkkhkkkkhkhkkkkhhhkkkkhhkkkhkkkkkkkkkkkkk /

#if !defined(SAFE_STR)

#define SAFE_STR(_String) ((_String) ? (_String) : "")

#endif /* #if !defined(SAFE STR) */

[ko ke ok ok ok ok sk ok sk ok ok ok ok ok ok ok ok ok ok
* DATA TYPES

*
\Fhkkkkkkhkkkkhkhhkkkhhkkkhkhhkkkhkkkkhkhhkkkhhkkkhkkkkkkkkkk*kx /
typedef struct tagTableInformation

char* szName ;
char* szDescr;
long iID;

int bUsed;
int bQuery;

} TTableInfo, *TPTablelnfo;

/% ok ko ok ok ok ok ok ok ok ok ok k kR ok ok k ok
* GLOBALS

*
\hkkokkokkkhkkkkdkkkkkhkkkkkkkkkkkkkkkhkkkkkhhkhkkkhkkkkhkhkkhkkhkkk* /
static TTableInfo g pTableInfoll =

"HSA", "Delivery point", HSA DPV, 0, 1},
"HSB", "Business delivery point", HSB_DPV, 0, 1},
"HSC", "CMRA delivery point", HSC_DPV, o, 1;,
"HSD", "Drop site delivery point", HSD_DPV, 0, 1},
"HSF", "False positive table", HSF DPV, 0, 1},
"HST", "Throwback delivery point", HST DPV, 0, 1},
"HSS", "Seasonal delivery point", HSS DPV, 0, 1},
"HSV", "Vacant delivery point", HSV_DPV, 0, 1},
"HSL", "LACS delivery point", HSL_DPV, o, 1;,
"HSK", "Drop count", HSK DPV, o, 1;,
"HS1", "Delivery type delivery point",HS1 DPV, 0, 1},
"HS2", "Delivery type delivery point", HS2 DPV, 0, 0},
"HS3", "Delivery type delivery point",HS3 DPV, 0, 0},
"HS4", "Delivery type delivery point",HS4 DPV, 0, 0},
"HSX", "Nostat delivery point", HSX DPV, 0, 1},
"LCD", "LCD table", LCDFILE DPV,0, 0},
"LCD NDX", "LCD index", LCDNDX_DPV,0, 0},

Address Matching System APl User Guide » August 2011 103

Appendix C: DPV®

}i

static int g iTableCount = (sizeof (g pTableInfo) /
sizeof (g pTableInfo[0])) ;

JHEK Kk Rk Rk ok kkkkkkkk Kk hkkkkkkhkkkkhkhkkkkhkhkkkkkkhkkhkkkkkkkkhx\
* PRIVATE INTERFACE

*
\Fhkkkkkkkkkkkhkhkhkhkkhhkkkhhhhkhhhhkkkhkhhkhkhhkkkhkkkkkkkkkk*kx /
static char* GetInput (const char* szMessage, char* szResponse, int iSize);
static void DisplayResults(ZIP4 PARM* pZip4Parm) ;

static void ReportStatus(int iRetCode) ;

static void Shutdown (int iRetCode) ;

/**\

* Description: Program entry point

* Input: none

* Globals: TTableInfo* - g pTableInfo (table info array)

* int - g_iTableCount (table info array count)
* Return: int - error status

\hkkkkokkkhkkkkdkkkkkkkkkkhkhhkkhkkkkkkkkkkkkkhkkkhkhkkkkhkkkhkkkk* /
int main(void)

Z40OPEN PARM Z4OpenParm = {{o}, 0};
ZIP4 PARM Zip4Parm = {{o}, {0}};:
char szPathAMS [1024] = {0};

char szPathDPV[1024] = {0};

char szPathSecure[1024] = {0};

char szResp [100] = {0};

int iRetCode = 0;

int iIndex = 0;

/* DISPLAY BANNER */
Printf (M \R- - o m e oo "

)i
printf ("\n USPS AMS/DPV API ") ;
printf ("\n Sample Application ") ;
printf ("\n ")
Printf (M\m--- - mmm s o e oo oo ") ;

/* SETUP DPV BEFORE Z4OPEN CALL */
GetInput ("\n\nLocation of DPV data files (Include ending slash): ",
szPathDPV, sizeof (szPathDPV) - 1);

Z4OpenParm.dpvflag = 'Y"';
Z40penParm.config.dpvpath szPathDPV;

/* SETUP AMS BEFORE Z40PEN CALL */
GetInput ("\nLocation of AMS data files (Include ending slash): ",

szPathAMS, sizeof (szPathAMS) - 1) ;
Z40OpenParm.config.addressl = szPathAMS;
Z40penParm.config.addrindex = szPathAMS;
Z40OpenParm.config.citystate = szPathAMS;
Z40penParm.config.crossref = szPathAMS;
Z4OpenParm.config.ewspath = szPathAMS;

GetInput ("\nLocation of security file (Include ending slash): ",
szPathSecure, sizeof (szPathSecure) - 1);

Z4OpenParm.config.system = szPathSecure;

/* OPTIONAL: CHECK FOR ELOT USERS */
GetInput ("\nWould you like to use ELOT (Y for yes, default no)? ",

Address Matching System API User Guide * August 2011 104

Appendix C: DPV®

szResp, sizeof (szResp)-1);

if (toupper (szResp[0]) == 'Y!')

{
Z4OpenParm.elotflag = 'Y"';
Z4OpenbParm.config.elot = szPathAMS;
Z4OpenParm.config.elotindex = szPathAMS;

/* OPEN AMS/DPV API */
iRetCode = z4opencfg(&Z40OpenParm) ;
if (iRetCode != 0)

Shutdown (iRetCode) ;
return O;

}

/* SEARCH FOR USED TABLES */
for(iIndex = 0; iIndex < g _iTableCount; iIndex++)

const char* szPathname = z4DpvGetPathname (g pTableInfo[iIndex].iID);

/* THE PATHNAME IS SET FOR USED TABLES */
g _pTableInfo[iIndex] .bUsed = (szPathname && szPathname[0]) ;

/* OPTIONAL: CHECK DATABASE INTEGRITY */
GetInput ("\nWould you like to check database integrity (Y for yes,
default no)? ", szResp, sizeof (szResp)-1);

if (toupper (szResp[0]) == 'Y'")
{
for(iIndex = 0; iIndex < g iTableCount; iIndex++)

/* SKIP UNUSED TABLES */
if (!g_pTableInfo[iIndex] .bUsed)
continue;

/* DISPLAY STATUS */
printf ("\n%s table: %s", g pTableInfo[iIndex] .szName,
z4DpvIsDataValid (g pTableInfo[iIndex] .iID) ? "Y" : "N");

}
}

/* OPTIONAL: CHECK TABLES BEING LOADED INTO RAM */
if (z4DpvIsOptions (HSC DPV, RAMLOAD DPV))

printf ("\n\nCMRA table loaded into RAM.") ;
if (z4DpvIsOptions (HSF _DPV, RAMLOAD DPV))

printf ("\nFALSE table loaded into RAM.");

/* OPTIONAL: CHECK DATABASE DATE */
printf ("\nDPV date (YYYYMMDD): %s", z4DpvGetDate()) ;

/* OPTIONAL: CHECK VERSION */
printf ("\nDPV version: %s", z4DpvGetVersion()) ;

/* OPTIONAL: CHECK FOR DPV BEING ENABLED */
if (z4DpvIsDisabled())

printf ("\nDPV is disabled.");
else

printf ("\nDPV is enabled.");

/* PROGRAM LOOP */
do

{

Address Matching System API User Guide * August 2011 105

Appendix C: DPV®

printf ("\n\n-----------“-“ - ") ;
printf ("\n Address Lookup "
printf("\n----------- o ")

/* CLEAR LOOKUP INFO */
memset (&Zip4Parm, 0x00, sizeof (Zip4Parm)) ;

/* GET USER'S ADDRESS INFO */

GetInput ("\nFirm Name : ", Zip4Parm.iadl2,
sizeof (Zip4Parm.iadl2)) ;

GetInput ("\nDelivery Address Xtra: ", Zip4Parm.iadl3,
sizeof (Zip4Parm.iadl3)) ;

GetInput ("\nDelivery Address : ", Zip4Parm.iadll,
sizeof (Zip4Parm.iadll)) ;

GetInput ("\nLast Line : ", Zip4Parm.ictyi,
sizeof (Zip4Parm.ictyi)) ;

GetInput ("\nUrbanization : ", Zip4Parm.iprurb,

sizeof (Zip4Parm.iprurb)) ;
/* PERFORM LOOKUP */
z4adring (&Zip4Parm) ;

/* CHECK FOR STOP PROCESSING */

if (z4DpvGetLastErrorCode() == LIST DPV)
{
const char* szSecurityCode = z4DpvGetKey () ;
char szResp [1024] = {0};
printf (z4DpvGetLastErrorMsg()) ;
/* CHECK FOR STOP PROCESSING */
if (szSecurityCode && *szSecurityCode)
printf ("\nDPV has been disabled.");
printf ("\n\nSecurity code: %s", szSecurityCode) ;
printf ("\nTo enable DPV contact customer support with the
security") ;
printf ("\ncode above to recieve the security key you need to
enable DPV") ;
GetInput ("\nEnter security key w/o formatting
characters: ",

szResp, sizeof (szResp)-1);

/* INFORM USER IF SUCCESSFUL */
if (z4DpvSetKey (szResp))

printf ("\nDPV has been enabled") ;

/* CHECK FOR RESOLVING MULTIPLE RESPONSES */
if (Zip4Parm.retcc == Z4 MULTIPLE)
z4DpvResolveMultiResp (&Zip4Parm) ;

/* DISPLAY RESULTS */
DisplayResults (&Zip4Parm) ;

/* CHECK FOR ENDING PROGRAM */
GetInput ("\nTo lookup another address press Y: ", szResp,
sizeof (szResp) -1) ;
}while(toupper (szResp[0]) == 'Y');

Address Matching System APl User Guide » August 2011 106

Appendix C: DPV®

/* CLEANUP (CLOSE AMS API) */
Shutdown (iRetCode) ;

return 0;

Address Matching System API User Guide * August 2011 107

Appendix C: DPV®

/**\

* Description: Show user the results of a lookup

* Input : ZIP4 PARM* - pointer to ZIP4_ PARM record

* Globals: TTableInfo* - g pTableInfo (table info array)

* int - g_iTableCount (table info array count)
* Return : None

\Fhkkkkkkhkkkkkkhkkkkhkkkkhhhkkkkhkkkkhkhkkkkhkkkkkkhkkkkkkkk*x /
static void DisplayResults (ZIP4_ PARM* pZip4Parm)

0

int iIndex ;
0;

int iTables

/* ERROR CHECK */
if (!pZip4Parm)
return;

/* DISPLAY AMS RESULTS */

printf ("\nReturn Code %il Stack Records [%i]", pZip4Parm->retcc,
pZip4Parm->respn) ;
printf ("\nRecord Type : %c", pZip4Parm->stack->rec_ type);
printf ("\nFinance : %$s", pZip4Parm->stack->finance) ;
printf ("\nFirm Name : %s", pZip4Parm->dadl2) ;
printf ("\nDelivery Address Xtra: %$s", pZip4Parm->dadl3);
printf ("\nDelivery Address : %s", pZip4Parm->dadll) ;
printf ("\nUrbanization : %$s", pZip4Parm->dprurb);
printf ("\nLast Line : %S %S %s-%s([%s]",

pZip4Parm->dctya, pZip4Parm->dstaa, pZip4Parm->zipc,
pZip4Parm->addon, pZip4Parm->dpbc) ;

printf ("\nCarrier route : %$s", pZip4Parm->cris);
printf ("\nLOT Number : %$s%c\n", pZip4Parm->elot num,

pZip4Parm->elot code) ;

/* DISPLAY DPV RESULTS */
for(iIndex = 0; iIndex < g iTableCount; iIndex++)

int bNewLine = ((iTables % 4) == 0);

/* SKIP NONQUERY TYPE TABLES */
if (! (g _pTableInfo[iIndex] .bUsed && g pTableInfo[iIndex] .bQuery))
continue;

/* DISPLAY 4 TABLE STATS PER LINE */
printf (bNewLine ? "\n" : "");

/* DISPLAY TABLE STATUS */
if (bNewLine)

printf ("%s=%c",
g pTableInfo[iIndex] .szName,
z4DpvGetCode (g_pTableInfo[iIndex] .iID)) ;

else

{
printf (" %s=%c",
g pTableInfo[iIndex] .szName,
z4DpvGetCode (g _pTableInfo[iIndex] .iID)) ;
}

/* TRACK USED TABLES */

iTables++;
printf ("\nDelivery type: %c", 2z4DpvGetDlvryType()) ;
printf ("\nFootnotes: $s", z4DpvGetFootnotes ()) ;

Address Matching System APl User Guide » August 2011 108

Appendix C: DPV®

printf ("\nDrop count: $1i\n", z4DpvGetDropCnt (HSK DPV)) ;

}

/**\

Description:
Input:

*
*
*
*

* Return:

Prompts and retrieves a response from the command line
const char* - Message

char* - User's response buffer
int - Size of response buffer
char* - User's response buffer

**/

static char* GetInput (const char* szMessage, char* szResponse, int iSize)

int iLen

/* ERROR

= 0;

CHECK INPUT */

if (!szResponse)
return szResponse;

/* PROMPT USER */
if (szMessage)
printf (szMessage) ;

/* GET RESPONSE */

szResponse [0] = 0;

fgets (szResponse, iSize, stdin);
fflush(stdin) ;

/* REMOVE THE ENTER KEY CHARACTER */
iLen = strlen(szResponse) ;

if (iLen && ((szResponse[ilen - 1] == '\n') || (szResponsel[ilen - 1] =

"\r')))

szResponse [ilLen - 1] = 0;

/* RETURN THE RESPONSE */
return szResponse;

}

**\

Input:

* Description:
*
* Globals:

*

* Return:

Display diagnostic info about the API

int - zdopen () /z4opencfg() return code
TTableInfo* - g pTableInfo (table info array)

int - g_iTableCount (table info array count)
None

\F*hkkkkkkhkkkkhkhkkkkhkkkkhkhhkkkhkkkkhkhkkkkhkkkkkkkkkkkkkkk*x /
static void ReportStatus (int iRetCode)

int

char
char

Z4 _ERROR
Z4_ENV

iIndex =0
szVersion[20]
szDate [20]

ErrorParm =
EnvParm =

]
~O0 O O~

/* DISPLAY REPORT BANNER */

printf ("\n\n--------cmmm e ")
printf ("\n STATUS REPORT ")
Printf ("\m---mmm s e \n'

/* GET AMS STATUS INFO */
z4ver (szVersion) ;

z4date (szDate) ;

z4getenv (&EnvParm) ;
z4geterror (&ErrorParm) ;

Address Matching System APl User Guide » August 2011 109

Appendix C: DPV®

/* DISPLAY AMS STATUS INFO */

printf ("\nAMS version: %$s", szVersion) ;

printf ("\nAMS date (YYYYMMDD): $%s", szDate);

printf ("\nzd4open() return code: %d", iRetCode) ;

printf ("\nError Message: %$s", ErrorParm.strErrorMessage) ;

printf ("\nFile Name: %$s", ErrorParm.strFileName) ;

printf ("\nDiagnostics: %$s", ErrorParm.strDiagnostics);

printf ("\nConfiguration File: %$s", EnvParm.strConfigFile);

printf ("\nAddressl: %s", EnvParm.addressl) ;

printf ("\nAddrIndex: %$s", EnvParm.addrindex) ;

printf ("\nCityState: %$s", EnvParm.citystate);

printf ("\nCrossRef: %s", EnvParm.crossref) ;

printf ("\nSystem: %$s", EnvParm.system) ;

printf ("\neLOT: %s", EnvParm.elot) ;

printf ("\neLOTIndex: %$s", EnvParm.elotindex) ;

printf ("\nEWS Path: %$s", EnvParm.ewspath) ;

printf ("\neLOT Flag: %c\n", EnvParm.elotflag) ;

/* DISPLAY DPV STATUS INFO */

printf ("\nDPV: %s", z4DpvIsDisabled() ? "disabled"
"enabled") ;

printf ("\nDPV version: %s", SAFE _STR(z4DpvGetVersion())) ;

printf ("\nDPV date (YYYYMMDD): %s", SAFE_STR(z4DpvGetDate()));

printf ("\nError Code: %$1i", z4DpvGetLastErrorCode()) ;

printf ("\nError Message: %s", SAFE_ STR(z4DpvGetLastErrorMsg())) ;

/* DISPLAY DPV TABLE INFO */
for(iIndex = 0; iIndex < g iTableCount; iIndex++)

/* SKIP UNUSED TABLES */
if (!g_pTableInfo[iIndex] .bUsed)
continue;

printf ("\n%s: %s", g pTableInfol[iIndex] .szName,
z4DpvGetPathname (g _pTableInfo[iIndex] .iID)) ;

}

/% ok k ko ok ok ok ok ok ko ko k ok ok ok ok k ok
* Description: Properly shuts down the AMS/DPV engine

* Input: int - z4open()/z4opencfg() return code

* Return: None
\hkkkkokkkkkkkdkkkkkhkkkkkkkkkkkkkkkhkhkkkhhkkkkkhkkkkkkkkhkkkkkk* /

static void Shutdown (int iRetCode)

const char* szSecurityCode = z4DpvGetKey () ;
char szResp [1024] = {0};
int iSize = sizeof (szResp) - 1;

/* CHECK FOR STOP PROCESSING */
if (szSecurityCode && *szSecurityCode)

printf ("\nDPV has been disabled.");

printf ("\n\nSecurity code: %s", szSecurityCode) ;

printf ("\nTo enable DPV contact customer support with the
security") ;

printf ("\ncode above to recieve the security key you need to
enable DPV") ;

GetInput ("\nEnter security key w/o formatting characters: ",
szResp, 1iSize);

Address Matching System API User Guide * August 2011 110

Appendix C: DPV®

/* INFORM USER IF SUCCESSFUL */
if (z4DpvSetKey (szResp))
printf ("\nDPV has been enabled") ;

}

/* OPTIONAL: DISPLAY STATUS REPORT */
GetInput ("\nWould you like a status report (Y for yes, default no)? ",
szResp, iSize);

if (toupper (szResp[0]) == 'Y')
ReportStatus (iRetCode) ;

/* CLOSE AMS/DPV API */
if (z4close())

printf ("\n\nError closing USPS AMS API\n");
else

printf ("\n\nUSPS AMS API is closed\n");

Address Matching System API User Guide * August 2011 111

	Section 1: Introduction and Overview
	USPS® Address Matching System Developer’s Kit
	Address Matching System Technical Support
	Installation Procedures for Windows (32 Bit)
	Installation Procedures for SUN UNIX (32 Bit)
	Installation Procedures for SUN UNIX (64 Bit)
	Installation Procedures for AIX UNIX
	Installation Procedures for LINUX (32 Bit)
	Installation Procedures for LINUX (64 Bit)

	Section 2: Coding Requirements
	Thread Safety
	Process Safety
	Stop Processing / False Positive Events
	Function Call Order

	Section 3: API Functions
	Open the Address Matching System with Special Parameters
	Address Inquiry
	Address Sort Key
	9-digit Inquiry
	11-digit Inquiry
	Address Standardization
	Close the Address Matching System
	Read City/State File By Key
	Read City/State File Next
	Read ZIP+4 File By Key
	Get ZIP Codes from a City/State
	Terminate Active Address Inquiry
	Get Date of ZIP+4 Database
	Get AMS Data Expiration
	Get AMS Library Expiration
	Multiple Response Stack
	Get Last Error
	Get Environment
	Retrieving the LACSLink® Security Key
	Checking for LACSLink functionality
	Disabling the LACSLink® Security Key
	SUITELINK™ Database Date
	SUITELINK™ Error Code
	SUITELINK™ Error Message
	SUITELINK™ Query
	Abbreviated Street Address Query

	Section 4: Footnote Flags
	Section 5: Record Types
	Section 6: Return Codes
	Appendix A: Interface Definition
	Appendix B: GDEV Application
	Appendix C: DPV®
	Error Values
	Error Codes
	Database Tables
	Database Table Options
	Data Types
	Interface Overview
	Notes
	DPV® Sample

